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Cross-over

• AGS (BNL), SPS (CERN) & RHIC (BNL)  -  many nice findings, BUT  
no   smoking gun for QGP!!!

• SPS (CERN), RHIC low energy program (BNL) - 

• NICA (JINR, Dubna) -

• FAIR (GSI, Darmstadt) -

25 Years of QGP Searches in HIC

searches for the (tri)critical endpoint  of QCD phase diagram;

searches for the mixed phase (hadrons+QGP);

searches for the densest state of nuclear matter

2940 M. Stephanov

here might not hold under further scrutiny. Nevertheless it is hoped that
these notes will provide a useful contemporary guide to both theorists and
experimentalists entering the field as well as a stimulating reading to the
field’s experts.

2. What is the QCD critical point?

2.1. The phase diagram

Fig. 1 shows a sketch of the QCD phase diagram as it is perceived by a
modern theorist. By a phase diagram we shall mean the information about
the location of the phase boundaries (phase transitions) as well as the physics
of the phases that these transitions delineate. The phase transitions are the
thermodynamic singularities of the system. The system under consideration
is a region (in theory, infinite) occupied by strongly interacting matter, de-
scribed by QCD, in thermal and chemical equilibrium, characterized by the
given values of temperature T and baryo-chemical potential µB. In practice,
it can be a region in the interior of a neutron star, or inside the hot and
dense fireball created by a heavy ion collision.
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Fig. 1. QCD phase diagram.

On the phase diagram, the regime of small T and large µB is of rel-
evance to neutron star physics. Because of low temperature, a very rich
spectrum of possibilities of ordering can be envisaged. The line separating
the Color-Flavor-Locked (CFL) phase, predicted in Ref. [7], from the higher
temperature disordered phase (quark-gluon plasma, or QGP) is the most
simplified representation of the possible phase structure in this region. This
regime is also of particular theoretical interest because analytical controllable
calculations are possible, due to asymptotic freedom of QCD. The reader is
referred to the reviews [1–5] which cover the recent developments in the
study of this domain of the phase diagram.

Terra Incognita

1-st order deconfinement PT

Hadrons

QGP? 1-st order deconfinement 
PT ( low T, large μ)  

cross-over transition    
( low μ, large T)

(tri)critical endpoint in 
between. Exact location is 
unknown!

Phase diagram major elements: 
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Astro & Cosmic QGP Searches Programs

• Strangelet - {see Bodmer (1971), 
Witten(1984), Jaffe (1984)}                            
finite drop of strange matter with 
LARGE baryonic charge and  
small electric charge.                        
May be stable at high densities 
(few normal nuclear densities) 
due to Chiral Symmetry (CS)
Restoration {Buballa(1996}:                            
In CS Restored phase                 
s-quark mass  <<   Fermi energy 
of u & d  quarks => u & d quarks  
weakly decay into s-quarks!

Properties of neutron stars

Quark (core) stars, neutron stars, stable strange stars, ...  

They can be formed is A+A HIC, in QCD phase transition in early Universe, 
in  collisions of  compact stars with large strangeness, in cosmic rays  e.t.c.
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First Conceptual Problem

•  Why the  small and not too heavy QGP bags with mass of 10–20 GeV have not been 
observed in A+A or in elementary particle collisions at low T?

•  Why the strangelets were never observed at low T?
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First Conceptual Problem

•  Why the  small and not too heavy QGP bags with mass of 10–20 GeV have not been 
observed in A+A or in elementary particle collisions at low T?

•  Why the strangelets were never observed at low T?

Usual concept: QGP bags cannot exist inside hadronic 
phase because of PT or strong cross-over. They should 
be  extremely suppressed statistically.
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Old concept (for µ = 0):
at low T < Tc the QGP bags cannot coexist with hadrons due to phase transition

(or strong cross-over).

Ẑ(s, T )︸ ︷︷ ︸
Isobaric partition

≡
∞∫

0

dV exp(−sV ) Z(V, T )︸ ︷︷ ︸
GCE partition

=
1

[s − F (s, T )]
,

Simple pole s∗ = sH(T )︸ ︷︷ ︸
HADRONIC

and essential singularity s∗ = sQ(T )
︸ ︷︷ ︸

QGP

: s∗ = F (s∗, T )

define phases
Typical form of bag spectrum: the discrete mass-volume spectrum FH(s, T )
of hadrons lighter than M0 and the continuous volume spectrum FQ(s, T )

F (s, T ) ≡ FH(s, T ) + FQ(s, T ) =
n∑

j=1

gje
−vjsφ(T, mj) +

∞∫

V0

dv

∞∫

M0

dm

∫
d3k

(2π)3
ρ(m, v) e−sv−

√
k2+m2

T =

n∑

j=1

gje
−vjsφ(T, mj) + u(T )

∞∫

V0

dv
exp [(sQ(T ) − s) v]

vτ
, V0 ≈ 1 fm3

sQ(T ) = pQ(T )
T

is defined via the QGP pressure pQ(T ) (MIT Bag Model). M0 ≈ 2.5 GeV

⇒ In hadronic phase s = sH(T ) > sQ(T )

⇒ large QGP bags in the spectrum F (s, T ) are exponentially suppressed!

• Volume and mass integrals in F (s, T ) acquire finite upper limits: Vmax and Mmax

⇒ finite v QGP bags can exist in hadronic phase as metastable states!

• Finite volume solution of GBM, K.A.B., Phys. Part. Nucl. 38 (2007), shows that

Z(V, T )︸ ︷︷ ︸
GCE partition

=
∑

{λn}

eλn V
[
1 − ∂F (V,λn,T )

∂λn

]−1
, with λn = F (Vmax, λn, T ) , n = 0, 1, 2, . . .

is a sum over all simple poles λn of the corresponding isobaric partition which are complex.
Complex λn correspond to the finite volume analog of a mixed phase!

For complex λn and small V the finite QGP bags are not suppressed anymore!

Furthermore, from an estimate for a decay (formation) time

τn ≈
Vmax

πn V0 T
≈

60 Vmax[fm · MeV]
nV0 T [MeV]

⇒ at low T % Tc the λn states with finite QGP bags could exist very long time!

⇒ for small V the finite QGP bags could coexist with hadrons!

• Moreover, since initial stage of collision is not equilibrated ⇒ nothing can prevent
the formation of metastable QGP bags in the hadronic phase!

⇒ Since the QGP bags were not observed at T < Tc, there must exist a reason for that!
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difficulties in their identification, but the point is that, despite the recent efforts of Ref. [27], the influence of large width
of heavy resonances on their equation of state (EoS) properties and the corresponding experimental consequences were
not studied in full.

Therefore, here we would like to introduce the finite and medium dependent width of QGP bags into statistical
description, study its influence on the system’s pressure at vanishing baryonic chemical potential and will show that
the subthreshold suppression of the QGP bags of this finite width model (FWM) resolves both of the conceptual
problems formulated above. Our major aim is to make a firm bridge between the statistical description of QGP, the
LQCD and the most general experimental facts on the properties of hadronic mass spectrum.

II. Basic Ingredients of the FWM. – The most convenient way to study the phase structure of any statistical model
similar to the SBM, GBM or QGBSTM is to use the isobaric partition [8, 21, 23] and find its rightmost singularities.
Hence, we assume that after the Laplace transform the FWM grand canonical partition Z(V, T ) generates the following
isobaric partition:

Ẑ(s, T ) ≡
∞∫

0

dV exp(−sV ) Z(V, T ) =
1

[s− F (s, T )]
, (1)

where the function F (s, T ) contains the discrete FH and continuous FQ mass-volume spectrum of the bags

F (s, T ) ≡ FH(s, T ) + FQ(s, T ) =
n∑

j=1

gje
−vjsφ(T, mj)

+
∞∫

V0

dv

∞∫

M0

dm ρ(m, v) exp(−sv)φ(T, m) . (2)

The particle density of bags of mass mk, eigen volume vk and degeneracy gk is given by φk(T ) ≡ gk φ(T, mk) with

φk(T ) ≡ gk

2π2

∞∫

0

p2dp e−
(p2 + m2

k)
1
2

T = gk
m2

kT

2π2
K2

(
mk
T

)
.

φ(T, mk) ≡ 1
2π2

∞∫

0

p2dp e−
(p2 + m2

k)
1
2

T

The mass-volume spectrum ρ(m, v) is the generalization of the exponential mass spectrum introduced by Hagedorn
[1, 2]. Like in the GBM and QGBSTM, the FWM bags are assumed to have the hard core repulsion of the Van der
Waals type which generates the suppression factor proportional to the exponential of bag’s eigen volume exp(−sv).
Since the mass-volume spectrum ρ(m, v) can be written in a form containing the discrete part FH , hereafter we will
not distinguish the discrete bags from the continuous bags, if their properties are similar. However, we will keep the
sum and integrals in (2) explicitly, since they correspond to different phases of the model.

The first term of Eq. (2), FH , represents the contribution of a finite number of low-lying hadron states up to mass
M0 ≈ 2 GeV [28]. This function has no s-singularities at any temperature T and can generate a simple pole of the
isobaric partition, whereas the mass-volume spectrum of the bags FQ(s, T ) can be chosen to generate an essential
singularity sQ(T ) ≡ pQ(T )/T which defines the QGP pressure pQ(T ) at zero baryonic densities [8, 21, 28].

From the definition of pressure in the grand canonical ensemble it is known that in the thermodynamic limit its
partition behaves as Z(V, T ) $ exp [pV/T ]. An exponentially increasing Z(V, T ) generates the rightmost singularity
s∗ = p/T of the function Ẑ(s, T ) in variable s. This is because the integral over V in Eq. (1) diverges at its upper
limit for s < p/T . Therefore, the rightmost singularity s∗ of Ẑ(s, T ) gives us the system pressure:

p(T ) = T lim
V→∞

lnZ(V, T )
V

= T s∗(T ) . (3)

The singularity s∗ of Ẑ(s, T ) (1) can be calculated from the transcendental equation [8, 21] s∗(T ) = F (s∗, T ).

Usual Concept: Gas of Bags Model
•  Why the  small and not too heavy QGP bags with mass of 10–20 GeV have not been 

observed in A+A or in elementary particle collisions?

Hard core repulsionHard core repulsion
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isobaric partition, whereas the mass-volume spectrum of the bags FQ(s, T ) can be chosen to generate an essential
singularity sQ(T ) ≡ pQ(T )/T which defines the QGP pressure pQ(T ) at zero baryonic densities [8, 21, 28].
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s∗ = p/T of the function Ẑ(s, T ) in variable s. This is because the integral over V in Eq. (1) diverges at its upper
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The singularity s∗ of Ẑ(s, T ) (1) can be calculated from the transcendental equation [8, 21] s∗(T ) = F (s∗, T ).

Usual Concept: Gas of Bags Model
•  Why the  small and not too heavy QGP bags with mass of 10–20 GeV have not been 

observed in A+A or in elementary particle collisions?

However, this is true for an infinite system only!           
In finite systems the suppression is not of Avogadro 
number order, but 1/10000 - 1/100000 only!  Then 
such QGP bags (and strangelets!) should have been 
observed as any METASTABLE STATE!

If they are absent, then there must be a reason for this!

Hard core repulsionHard core repulsion
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Hagedorn Mass Spectrum
8

Paradoxical situation with the Hagedorn mass spectrum: ρ(m)
∣∣∣∣
m!TH

∼ exp
[

m
TH

]

It was predicted for m! 1 GeV by Hagedorn in 1965

It follows from the statistical bootstrap model (Frautschi, 1971);

from Veneziano model (1970), from Bag Model (Kapusta, 1981);

from large Nc limit of 3+1 QCD (Cohen, 2009)

Also the Hagedorn mass spectrum is observed experimentally,

BUT

It is observed for 1.3 GeV < m < 2.5 GeV only,

i.e. NOT WHERE IT WAS PREDICTED!

⇒ There is a huge deficit of heavy hadrons predicted by stat. bootstrap model!

It is believed that heavy resonances are not observed due to their large width.

⇒ They are difficult to be observed due to short life-time and many channels of decay.

However, none of the GBM versions accounts for the width of resonances!

GBM contains the Hagedorn mass (volume) spectrum of bags
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Second Conceptual Problem
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FIG. 1: Accumulated spectrum of non-strange mesons plotted
as a function of mass (step-like lines). The lower curve at
high m corresponds to particles listed in the Particle Data
Tables of Ref. [7], while the higher two curves include the new
experimental and theoretical states as described in the text.
The middle curve includes the states listed in Refs. [13, 14],
while the top curve adds the states with hidden strangeness.
The thin dashed (solid) line corresponds to the exponential fit
to the spectra of the old (new) data. The arrows indicate the
approximate upper values in m of the validity of the Hagedorn
hypothesis for the old and new data, respectively.

the proposed idea that the spontaneously broken chiral
symmetry of QCD should be effectively restored in the
highly excited hadrons (one terms this phenomenon as
the chiral symmetry restoration of the second kind) [10,
11, 12]. This kind of chiral symmetry restoration implies
that the excited hadron states fill out multiplets of the
chiral U(2)L×U(2)R group. Indeed, the newly discovered
meson states [8, 9] turned out to systematically fall into
almost degenerate chiral multiplets with a few missing
states yet to be discovered [13, 14].

In this note we extend the analysis of Refs. [15, 16] and
include all mesons listed in Refs. [13, 14]. We stress that
in addition to the experimental states which have been
reported in Refs. [8, 9] we add a few still missing states
(marked with the question signs in Refs. [13, 14]) and re-
construct their energies according to the known energies
of their chiral partners. We consider only the J = 0, 1,
2, and 3 states, where the experimental information is
rather complete.

In addition to these states we also consider the states
with hidden strangeness, i.e. composed of the s̄s pairs.
These states could not be seen in p̄p. Hence here our pro-
cedure is somewhat more speculative. We assume that
any isosinglet n̄n = ūu+d̄d√

2
, which is experimentally seen

in p̄p, should be accompanied by an s̄s state with the
mass approximately 200 MeV higher. Hence, given the
complete amount of the n̄n states listed in Refs. [13, 14]
we add the corresponding s̄s states.

Rather than comparing the density of states ρ(m) itself

to the data, it is customary to form the accumulated
number of states of mass lower than m,

Nexp(m) =
∑

i

giΘ(m − mi), (2)

where gi = (2Ji+1)(2Ii+1) is the spin-isospin degeneracy
of the ith state, and mi is its mass. The theoretical
counterpart of Eq. (2) is

Ntheor(m) =

∫ m

0

ρ(m′)dm′. (3)

Working with N(m) rather than ρ(m) conveniently
avoids the need of building histograms, but clearly it is
a purely technical issue and the conclusions drawn below
remain unchanged if one decides to work with ρ(m) itself.

The results of our compilation for non-strange mesons
are shown in Fig. 1. The lines with steps correspond
to Eq. (2). Above m = 1.8 GeV the curves split into
three, with the lower one representing the compilation
of Ref. [15] based of the 1998 review of PDG [7]. The
middle curve contains in addition the states listed in
refs. [13, 14], while the top curve includes also the hidden-
strangeness states, as described above. It is clear from
Fig. 1 that the included new states nicely line up along
the exponential growth, thus extending the range of the
Hagedorn hypothesis seen in the data. We also note
that adding up the hidden-strangeness states has a much
smaller effect than adding the states of Refs. [13, 14],
which is simply due to a lower isospin degeneracy factor.

The thin solid lines in Fig. 1 show the results of the
exponential fits with f(m) = 1 in Eq. (1, 3), which is the
simplest choice. While for the old data the least-squares
method yields ρ(m) = 2.84/GeVexp[m/314 MeV)], with
the states of Ref. [13, 14] included we obtain ρ(m) =
4.73/GeVexp[m/(367 MeV)], and with the additional s̄s
states we get ρ(m) = 4.52/GeVexp[m/362 MeV)]. The
fit was made up to m = 1.8 GeV with the old data and
up to m = 2.3 GeV with the new data. The higher value
for TH obtained with the new data corresponds to the
lower slope in Fig. 1. Certainly, the values of the fitted
parameters should be taken with care, since they also
reflect the assumed fitting range in m. It should also
be noted, that adding more states in the range around
2 GeV, when experimentally found, would increase the
slope, thus decreasing TH .

In this place the reader may be a bit surprized with
the quoted high values of TH , much higher than the
typically cited values in the range of 200 MeV. The is-
sue, as discussed in detail in Ref. [17], has to do with
the choice of the “slowly-varying” function f(m). The
point is that typical model predictions for this func-
tion are not so slowly varying in the range of data.
For instance, with the original Hagedorn choice f(m) =
const/(m2 + 500 MeV2)5/4 we get much lower values for
TH . With this form we obtain for the bottom to top
curves of Fig. 1 the following values: TH = 196, 230, and
228 MeV, respectively. The choice of the fitting range in
m is as stated above.
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Second Conceptual Problem
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of their chiral partners. We consider only the J = 0, 1,
2, and 3 states, where the experimental information is
rather complete.

In addition to these states we also consider the states
with hidden strangeness, i.e. composed of the s̄s pairs.
These states could not be seen in p̄p. Hence here our pro-
cedure is somewhat more speculative. We assume that
any isosinglet n̄n = ūu+d̄d√

2
, which is experimentally seen

in p̄p, should be accompanied by an s̄s state with the
mass approximately 200 MeV higher. Hence, given the
complete amount of the n̄n states listed in Refs. [13, 14]
we add the corresponding s̄s states.

Rather than comparing the density of states ρ(m) itself

to the data, it is customary to form the accumulated
number of states of mass lower than m,

Nexp(m) =
∑

i

giΘ(m − mi), (2)

where gi = (2Ji+1)(2Ii+1) is the spin-isospin degeneracy
of the ith state, and mi is its mass. The theoretical
counterpart of Eq. (2) is

Ntheor(m) =

∫ m

0

ρ(m′)dm′. (3)

Working with N(m) rather than ρ(m) conveniently
avoids the need of building histograms, but clearly it is
a purely technical issue and the conclusions drawn below
remain unchanged if one decides to work with ρ(m) itself.

The results of our compilation for non-strange mesons
are shown in Fig. 1. The lines with steps correspond
to Eq. (2). Above m = 1.8 GeV the curves split into
three, with the lower one representing the compilation
of Ref. [15] based of the 1998 review of PDG [7]. The
middle curve contains in addition the states listed in
refs. [13, 14], while the top curve includes also the hidden-
strangeness states, as described above. It is clear from
Fig. 1 that the included new states nicely line up along
the exponential growth, thus extending the range of the
Hagedorn hypothesis seen in the data. We also note
that adding up the hidden-strangeness states has a much
smaller effect than adding the states of Refs. [13, 14],
which is simply due to a lower isospin degeneracy factor.

The thin solid lines in Fig. 1 show the results of the
exponential fits with f(m) = 1 in Eq. (1, 3), which is the
simplest choice. While for the old data the least-squares
method yields ρ(m) = 2.84/GeVexp[m/314 MeV)], with
the states of Ref. [13, 14] included we obtain ρ(m) =
4.73/GeVexp[m/(367 MeV)], and with the additional s̄s
states we get ρ(m) = 4.52/GeVexp[m/362 MeV)]. The
fit was made up to m = 1.8 GeV with the old data and
up to m = 2.3 GeV with the new data. The higher value
for TH obtained with the new data corresponds to the
lower slope in Fig. 1. Certainly, the values of the fitted
parameters should be taken with care, since they also
reflect the assumed fitting range in m. It should also
be noted, that adding more states in the range around
2 GeV, when experimentally found, would increase the
slope, thus decreasing TH .

In this place the reader may be a bit surprized with
the quoted high values of TH , much higher than the
typically cited values in the range of 200 MeV. The is-
sue, as discussed in detail in Ref. [17], has to do with
the choice of the “slowly-varying” function f(m). The
point is that typical model predictions for this func-
tion are not so slowly varying in the range of data.
For instance, with the original Hagedorn choice f(m) =
const/(m2 + 500 MeV2)5/4 we get much lower values for
TH . With this form we obtain for the bottom to top
curves of Fig. 1 the following values: TH = 196, 230, and
228 MeV, respectively. The choice of the fitting range in
m is as stated above.

For width of QGP bags see D.Blaschke & K.A.B. in 2003-2005

However,  the full  Hagedorn mass spectrum  is used in ALL realistic statistical 
models like Gas of Bags Model (GBM)  and NO width is accounted for!

8

Paradoxical situation with the Hagedorn mass spectrum: ρ(m)
∣∣∣∣
m!TH

∼ exp
[

m
TH

]

It was predicted for m! 1 GeV by Hagedorn in 1965

It follows from the statistical bootstrap model (Frautschi, 1971);

from Veneziano model (1970), from Bag Model (Kapusta, 1981);

from large Nc limit of 3+1 QCD (Cohen, 2009)

Also the Hagedorn mass spectrum is observed experimentally,

BUT

It is observed for 1.3 GeV < m < 2.5 GeV only,

i.e. NOT WHERE IT WAS PREDICTED!

⇒ There is a huge deficit of heavy hadrons predicted by stat. bootstrap model!

It is believed that heavy resonances are not observed due to their large width.

⇒ They are difficult to be observed due to short life-time and many channels of decay.

However, none of the GBM versions accounts for the width of resonances!

8



Finite Width Model
Major aims are:

1)  to include the finite medium dependent width into statistical model 
in the most general fashion (FWM).

2) to resolve these two conceptual problems and to derive a general 
form of EOS from the clear physical assumptions.

3) to compare the obtained EOS with the lattice QCD results and to 
find out the width of heavy QGP bags.

In fact, we want to make a firm bridge between 
the lattice QCD thermodynamics and hadronic phenomenology 

via the statistical approach. 

 lattice QCD
thermodynamics 

hadronic 
phenomenology

 Finite Width Model 

9



Finite Width Model Spectrum

K.A.B. PRC76(2007)

Experimental input

To have convergent  partition

To have (tri)critical endpoint

8

Paradoxical situation with the Hagedorn mass spectrum: ρ(m)
∣∣∣∣
m!TH

∼ exp
[

m
TH

]

it was predicted for m " 1 GeV, but is observed for 1.3 GeV < m < 2.5 GeV only!

⇒ There is a huge deficit of heavy hadrons predicted by stat. bootstrap model!

It is believed that heavy resonances are not observed due to their large width.

⇒ They are difficult to be observed due to short life-time and many channels of decay.

However, none of the GBM versions accounts for the width of resonances!

• To make the bridge from hadronic phenomenology we need the Hagedorn-like mass spectrum!

• To introduce the width Γ we need the Gaussian attenuation,
since the Breit-Wigner one does not work for the Hagedorn-like mass spectrum!

• To get a realistic model we need to introduce the surface tension for QGP bags!

⇒ the simplest parameterization of the spectrum ρ(m, v) is

ρ(m, v) =
ρ1(v) NΓ

Γ(v) ma+ 3
2

exp
[

m

TH
−

(m − Bv)2

2Γ2(v)

]

︸ ︷︷ ︸
Hagedorn & Gaussian terms

, with ρ1(v) = f(T ) v−b exp
[
−

σ(T )
T

vκ
]

︸ ︷︷ ︸
Surface tension

,

Important:
• Gaussian width Γ(v) depends on bag’s volume v, on T , but not on mass m!

• Gaussian width Γ(v) is related to the true resonance width as ΓR = 2
√

2 ln 2 Γ(v) ≈ 2.355 Γ(v)

• The most probable mass in a vacuum must be positive B > 0

⇒ Normalization factor is

N−1
Γ =

∞∫

M0

dm

Γ(v)
exp

[
− (m−Bv)2

2Γ2(v)

]
≈

∣∣∣∣
v!V0,M0/B

≈
√

2 π

10



Analysis of the FWM Spectrum 8

• For simplicity let’s consider only two choices for Gaussian width Γ(v):

v-independent width Γ(v) = Γ0 ≡ Const and v-dependent width Γ(v) = Γ1 ≡ γv
1
2

Ignoring the hard-core repulsion and thermostate in FQ(s, T ): ⇒

ρ(m) ≡
∞∫

V0

dv ρ(m, v) =
∞∫

V0

dv
ρ1(v) NΓ

Γ(v) ma+ 3
2

exp
[

m
TH
− (m−Bv)2

2Γ2(v)

]
≈

∣∣∣∣
m#M0

≈
ρ1(m

B )
B ma+ 3

2
exp

[
m
TH

]

Can be derived, if for v % V0 the width grows slower than v(1−κ/2) = v2/3

This is so, since for Γ(v) = Γ0 or Γ(v) = Γ1 the Gaussian width acts like the Dirac δ-function!

⇒ The FWM spectrum corresponds to the Hagedorn mass spectrum
modified by the surface tension!

⇒ Similarly, the mean width Γ(v) ≈ Γ(m/B)

⇒ for Γ(v) = Γ1 one gets the large mean width Γ1(m/B) = γ
√

m/B

⇒ for Γ1(m/B) = γ
√

m/B the heavy resonances are hard to be observed!

The second conceptual problem is resolved.

11



High T Behavior of FWM Spectrum

10

• For simplicity let’s consider only two choices for Gaussian width Γ(v):

v-independent width Γ(v) = Γ0 ≡ Const and v-dependent width Γ(v) = Γ1 ≡ γv
1
2

Ignoring the hard-core repulsion and thermostate in FQ(s, T ): ⇒

ρ(m) ≡
∞∫

V0

dv ρ(m, v) =
∞∫

V0

dv
ρ1(v) NΓ

Γ(v) ma+ 3
2

exp
[

m
TH
− (m−Bv)2

2Γ2(v)

]
≈

∣∣∣∣
m#M0

≈
ρ1(m

B )
B ma+ 3

2
exp

[
m
TH

]

Can be derived, if for v % V0 the width grows slower than v(1−κ/2) = v2/3

This is so, since for Γ(v) = Γ0 or Γ(v) = Γ1 the Gaussian width acts like the Dirac δ-function!

⇒ The FWM spectrum corresponds to the Hagedorn mass spectrum
modified by the surface tension!

⇒ Similarly, the mean width Γ(v) ≈ Γ(m/B)

⇒ for Γ(v) = Γ1 one gets the large mean width Γ1(m/B) = γ
√

m/B

⇒ for Γ1(m/B) = γ
√

m/B the heavy resonances are hard to be observed!

The second conceptual problem is resolved.

Let’s calculate F (s, T ). Depending on the sign of the most probable mass

〈m〉 ≡ Bv + Γ2(v)β︸ ︷︷ ︸
most probable mass

, with β ≡ T−1
H − T−1

there are two distinct cases : 〈m〉 > 0 and 〈m〉 < 0

Let’s calculate F (s, T ) for T ≥ TH ⇒ 〈m〉 > 0 for v % V0 by saddle point

For M0 % T one can use the nonrelativistic approximation for momentum⇒

F+
Q (s, T ) =

∞∫

V0

dv

∞∫

M0

dm

∫
d3k

(2π)3
ρ(m, v) e−sv−

√
k2+m2

T =
[

T

2π

] 3
2
∞∫

V0

dv

∞∫

M0

dm
ρ1(v) NΓ

Γ(v) ma
exp

[
βm− (m−Bv)2

2Γ2(v) − sv
]

F+
Q (s, T ) ≈

[
T

2π

] 3
2
∞∫

V0

dv
ρ1(v)
〈m〉a exp

[
(p+−sT )v

T

]
, with the pressure p+ ≡ T

(
βB +

Γ2(v)
2v

β2

)

In terms of 〈m〉 > 0 it reads as: p+ ≡ T β
v

[
〈m〉 − 1

2
Γ2(v)β

]

⇒ In general, the pressure of large QGP bags is due to the mass density and the width!

Note that width may CORRECTLY contribute into 〈m〉 > 0 and p+ for Γ(v) ≤ Γ1 only!

12



High T Behavior of FWM Spectrum

10

• For simplicity let’s consider only two choices for Gaussian width Γ(v):

v-independent width Γ(v) = Γ0 ≡ Const and v-dependent width Γ(v) = Γ1 ≡ γv
1
2

Ignoring the hard-core repulsion and thermostate in FQ(s, T ): ⇒

ρ(m) ≡
∞∫

V0

dv ρ(m, v) =
∞∫

V0

dv
ρ1(v) NΓ

Γ(v) ma+ 3
2

exp
[

m
TH
− (m−Bv)2

2Γ2(v)

]
≈

∣∣∣∣
m#M0

≈
ρ1(m

B )
B ma+ 3

2
exp

[
m
TH

]

Can be derived, if for v % V0 the width grows slower than v(1−κ/2) = v2/3

This is so, since for Γ(v) = Γ0 or Γ(v) = Γ1 the Gaussian width acts like the Dirac δ-function!

⇒ The FWM spectrum corresponds to the Hagedorn mass spectrum
modified by the surface tension!

⇒ Similarly, the mean width Γ(v) ≈ Γ(m/B)

⇒ for Γ(v) = Γ1 one gets the large mean width Γ1(m/B) = γ
√

m/B

⇒ for Γ1(m/B) = γ
√

m/B the heavy resonances are hard to be observed!

The second conceptual problem is resolved.

Let’s calculate F (s, T ). Depending on the sign of the most probable mass

〈m〉 ≡ Bv + Γ2(v)β︸ ︷︷ ︸
most probable mass

, with β ≡ T−1
H − T−1

there are two distinct cases : 〈m〉 > 0 and 〈m〉 < 0

Let’s calculate F (s, T ) for T ≥ TH ⇒ 〈m〉 > 0 for v % V0 by saddle point

For M0 % T one can use the nonrelativistic approximation for momentum⇒

F+
Q (s, T ) =

∞∫

V0

dv

∞∫

M0

dm

∫
d3k

(2π)3
ρ(m, v) e−sv−

√
k2+m2

T =
[

T

2π

] 3
2
∞∫

V0

dv

∞∫

M0

dm
ρ1(v) NΓ

Γ(v) ma
exp

[
βm− (m−Bv)2

2Γ2(v) − sv
]

F+
Q (s, T ) ≈

[
T

2π

] 3
2
∞∫

V0

dv
ρ1(v)
〈m〉a exp

[
(p+−sT )v

T

]
, with the pressure p+ ≡ T

(
βB +

Γ2(v)
2v

β2

)

In terms of 〈m〉 > 0 it reads as: p+ ≡ T β
v

[
〈m〉 − 1

2
Γ2(v)β

]

⇒ In general, the pressure of large QGP bags is due to the mass density and the width!

Note that width may CORRECTLY contribute into 〈m〉 > 0 and p+ for Γ(v) ≤ Γ1 only!

 However, this case does not resolve the first problem!
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Low T Behavior of FWM Spectrum
9

For T ! TH and 0 < B <∞ ⇒

〈m〉 < 0 for v $ V0 : by steepest descent!

The maximum is below M0 and ,hence,

the tail of distribution contributes only!

⇒ Subthreshold Suppression of QGP bags

F−Q (s, T ) =
∞∫

V0

dv

∞∫

M0

dm

∫
d3k

(2π)3
ρ(m, v) e−sv−

√
k2+m2

T =
[

T

2π

] 3
2
∞∫

V0

dv

∞∫

M0

dm
ρ1(v) NΓ

Γ(v) ma
exp

[
βm− (m−Bv)2

2Γ2(v) − sv
]

F−Q (s, T ) ≈
[

T

2π

] 3
2
∞∫

V0

dv
ρ1(v)NΓ Γ(v) exp

[
(p−−sT )v

T

]

Ma
0 [M0 − 〈m〉+ aΓ2(v)/M0]

,

with the pressure p− = T
v

[
βM0 − (M0−Bv)2

2 Γ2(v)

]
≈

∣∣∣∣
v$V0

≈ −T B2

2 γ2 .

Important: • Can be derived for B > 0 only!

if B < 0, then NΓ ≈ [M0 − 〈m〉] Γ−1(v) exp
[

(M0−Bv)2

2 Γ2(v)

]
would cancel the leading term in p−

• Can be derived for Γ(v) = Γ1(v), since only in this case 〈m〉 ≡ Bv + Γ2(v)β < 0 for B > 0 at low T !
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Volume Dependence of  Width

K.A.B. PRC76(2007)

Closely resembles low T pressure known from lattice QCD!!!

10

For T ! TH and 0 < B <∞ ⇒

〈m〉 < 0 for v $ V0 : by steepest descent!

The maximum is below M0 and ,hence,

the tail of distribution contributes only!

⇒ Subthreshold Suppression of QGP bags

F−Q (s, T ) =
∞∫

V0

dv

∞∫

M0

dm

∫
d3k

(2π)3
ρ(m, v) e−sv−

√
k2+m2

T =
[

T

2π

] 3
2
∞∫

V0

dv

∞∫

M0

dm
ρ1(v) NΓ

Γ(v) ma
exp

[
βm− (m−Bv)2

2Γ2(v) − sv
]

F−Q (s, T ) ≈
[

T

2π

] 3
2
∞∫

V0

dv
ρ1(v)NΓ Γ(v) exp

[
(p−−sT )v

T

]

Ma
0 [M0 − 〈m〉+ aΓ2(v)/M0]

,

with the pressure p− = T
v

[
βM0 − (M0−Bv)2

2 Γ2(v)

]
≈

∣∣∣∣
v$V0

≈ −T B2

2 γ2 .

Important: • Can be derived for B > 0 only!

if B < 0, then NΓ ≈ [M0 − 〈m〉] Γ−1(v) exp
[

(M0−Bv)2

2 Γ2(v)

]
would cancel the leading term in p−

• Can be derived for Γ(v) = Γ1(v), since only in this case 〈m〉 ≡ Bv + Γ2(v)β < 0 for B > 0 at low T !

• The case 〈m〉 ≡ Bv + Γ2(v)β > 0 exists for T ≥ α TH with α < 1

It generates the QGP bag pressure p+ ≡ T
(
βB + Γ2(v)

2v
β2

)
= T β

v

[
〈m〉 − 1

2
Γ2(v)β

]

for any Γ(v), if width grows slower than v(1−κ/2) = v2/3, but is meaningful for Γ(v) ≤ Γ1(v)

Has the same phase structure as the QGBSTM with τ = a + b.

• The case 〈m〉 ≡ Bv + Γ2(v)β < 0 exists for T < α TH with α < 1

It generates the QGP bag pressure p− = −T B2

2 γ2 and can be derived for Γ(v) = Γ1(v) only!

⇒ This is truly nonperturbative effect because for stable hadrons it does not exist!

⇒ Finite pressure of large QGP bags with nonzero width exists

for Γ(v) = Γ1(v) = γ
√

v only!
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First Conceptual Problem is Resolved
11

For T < α TH with α < 1 exists Subthreshold Suppression of QGP bags ⇒

only the bags with mass ∼ M0 ≈ 2.5 GeV and volume ∼ V0 ≈ 1 fm3

could contribute into partition, but they are HIGHLY SUPPRESSED!

⇒ Case 〈m〉 < 0 resolves the first conceptual problem for finite systems for T < α TH.

What about α TH ≤ T ≤ TH?

Now I show that in this case the QGP bags have very large width,

⇒ they are indistinguishable from the usual short-living hadrons!
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MIT Bag Model EoS 
15

• Consider stable resonances Γ(v) = 0 and MIT bag model

Equating p+ = TβB with pbag ≡ σT 4 − Bbag ⇒ Bbag = σT 4
H and

the most probable mass density 〈m〉
v

≡ B = σTH(T + TH)(T 2 + T 2
H)

⇒ p+ = TβB and 〈m〉 = Bv > 0 ⇒ there is no subthreshold suppression.

⇒ The usual MIT bag model can be reproduced.

However, it has both conceptual problems!

Keep in mind: BMIT = σTH(T 3
H + T 2

HT + THT 2 + T 3)
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MIT Bag Model EoS 
15

• Consider stable resonances Γ(v) = 0 and MIT bag model

Equating p+ = TβB with pbag ≡ σT 4 − Bbag ⇒ Bbag = σT 4
H and

the most probable mass density 〈m〉
v

≡ B = σTH(T + TH)(T 2 + T 2
H)

⇒ p+ = TβB and 〈m〉 = Bv > 0 ⇒ there is no subthreshold suppression.

⇒ The usual MIT bag model can be reproduced.

However, it has both conceptual problems!

Keep in mind: BMIT = σTH(T 3
H + T 2

HT + THT 2 + T 3)

Moreover, MIT Bag Model EoS contradicts to LQCD!
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More Realistic EoS 18

• The model pressure pa = σT 4 − A1T (A1 > 0)

describes LQCD data well: C. G. Kallman, Phys. Lett. B 134, 363 (1984),

M. I. Gorenstein, O. A. Mogilevsky, Z. Phys. C 38 (1988)

But these are OLD LQCD data!

For new data analysis see K.A.B. et al. PRC 79 (2009)

Entropy density: s = dp
dT

= 4σT 3 − A1;

and energy density: ε = Ts − p = 3σT 4 ⇒ NO T-linear term in ε!

⇒ p
T 4 = σ − A1

T 3 ,
δ

T 4 = ε−3 p
T 4 = 3A1

T 3 ⇒ are linear in 1
T 3

Recently it was claimed that pa = σT 4 − AT 2

R. D. Pisarski, Prog. Theor. Phys. Suppl. 168, 276 (2007)

⇒ What do the modern LQCD data show?

For pa = σT 4 − A1T (A1 > 0) and Γ(v) = 0 ⇒

〈m〉
v

≡ B = σTTH(2 T 2 + TTH + T 2
H)

with TH ≈ 180 MeV: A1 = σT 3
H

•• p+ works for any T , but there is no Subthreshold Suppression!

⇒ Such QGP bags (strangelets) should have been observed!

⇒ Finite width is necessary!
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p/T**4 (MeV**0)

delta/T**4 (MeV**0)

T**(-3) (GeV**-3)

Black dashed line is a linear fit of pressure/T**4
a0 = 4.5094;  a1=-0.0304
TH = 180 MeV in this case

     a2 =    0
     a1 =   0.0916
     a0 =   0.2514
     TH =    180. MeV 
For delta fit by black line
For six fitting points =>
chi**2 * 4 = 0.251788
or 
chi**2/dof = 0.062947

recent LQCD data:

SU(3)C with 3 flavors

Cheng et al, arXiv:0710.0354

Red symbols:

Trace anomaly δ/T 4 = (ε − 3 p)/T 4

χ2/d.o.f ≈ 0.062

Blue symbols: p/T 4

⇒ LQCD pressure has σT 4, −σT 3
H T and T 4 ln T

TH
terms!

pQGP = σ T 4 − σT 3
H T + ã0T

4 ln

[
T

TH

]

︸ ︷︷ ︸
small

, for 240 MeV ≤ T ≤ 420 MeV

Model σ Tc ΓR(V0, T = 0) ΓR(V0, T = TH)

SU(2)C Gluo- σ = 6
90

π2 170 MeV 410 MeV 1420 MeV

dynamics σ = 6
90

π2 200 MeV 616 MeV 2133 MeV

SU(3)C σ = 37
90

π2 170 MeV 391 MeV 1355 MeV

with 2 flavors σ = 37
90

π2 200 MeV 587 MeV 2034 MeV

SU(3)C σ = 95
180

π2 196 MeV 596 MeV 2065 MeV

with 3 flavors

⇒
LQCD the width estimates are insensitive to the number of elementary d.o.f!

          

Width Estimate from Lattice QCD Width Estimate from Lattice QCD 

Obtained by LQCD data fit

COMPARE  T-linear terms!

10

For T ! TH and 0 < B <∞ ⇒

〈m〉 < 0 for v $ V0 : by steepest descent!

The maximum is below M0 and ,hence,

the tail of distribution contributes only!

⇒ Subthreshold Suppression of QGP bags

F−Q (s, T ) =
∞∫

V0

dv

∞∫

M0

dm

∫
d3k

(2π)3
ρ(m, v) e−sv−

√
k2+m2

T =
[

T

2π

] 3
2
∞∫

V0

dv

∞∫

M0

dm
ρ1(v) NΓ

Γ(v) ma
exp

[
βm− (m−Bv)2

2Γ2(v) − sv
]

F−Q (s, T ) ≈
[

T

2π

] 3
2
∞∫

V0

dv
ρ1(v)NΓ Γ(v) exp

[
(p−−sT )v

T

]

Ma
0 [M0 − 〈m〉+ aΓ2(v)/M0]

,

with the pressure p− = T
v

[
βM0 − (M0−Bv)2

2 Γ2(v)

]
≈

∣∣∣∣
v$V0

≈ −T B2

2 γ2 .

Important: • Can be derived for B > 0 only!

if B < 0, then NΓ ≈ [M0 − 〈m〉] Γ−1(v) exp
[

(M0−Bv)2

2 Γ2(v)

]
would cancel the leading term in p−

• Can be derived for Γ(v) = Γ1(v), since only in this case 〈m〉 ≡ Bv + Γ2(v)β < 0 for B > 0 at low T !

• The case 〈m〉 ≡ Bv + Γ2(v)β > 0 exists for T ≥ α TH with α < 1

It generates the QGP bag pressure p+ ≡ T
(
βB + Γ2(v)

2v
β2

)
= T β

v

[
〈m〉 − 1

2
Γ2(v)β

]

for any Γ(v), if width grows slower than v(1−κ/2) = v2/3, but is meaningful for Γ(v) ≤ Γ1(v)

Has the same phase structure as the QGBSTM with τ = a + b.

• The case 〈m〉 ≡ Bv + Γ2(v)β < 0 exists for T < α TH with α < 1

It generates the QGP bag pressure p− = −T B2

2 γ2 and can be derived for Γ(v) = Γ1(v) only!

⇒ This is truly nonperturbative effect because for stable hadrons it does not exist!

Due to Subthreshold Suppression only

the bags with mass ∼M0 and volume ∼ V0 can contribute into F (s, T )!

Since such QGP bags have large width,
they are indistinguishable from the usual short-lived hadrons!

⇒ The case 〈m〉 < 0 resolves the first conceptual problem for finite systems.

         Derived by FWM at low T! 
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Comparison with Lattice QCD 20

• Consider the finite width of resonances Γ(v) = Γ1(v) and the model pressure

pa = σT 4 − A1T : for T → ∞ ⇒ pa → σT 4,
but for T → 0 ⇒ pa → −A1T

Compare this with
p+ = T

[
βB + 1

2
γ2β2

]
for T ≥ α TH and p− = −T B2

2 γ2 for T < α TH

⇒ Idea: for all T ≤ α TH ⇒ B(T ) ≈ BMIT ( up to small correction T 3)

⇐⇒ For vanishing width the QGP bag pressure is MIT Bag model pressure,

while finite width generates T -linear pressure!

⇒ B(T ) = σT 2
H(T 2

H + THT + T 2) for any T ≤ TH

⇒ γ2 = 2 TσT 2
H(T 2 + TTH + T 2

H) ≡ 2 T B(T )

⇒ 〈m〉
v

= B(T )
[

2 T
TH

− 1
]

; α = 0.5

⇒ γ2
0 = B2

0

2A1
= 1

2
THB0 = σ

2
T 5

H ⇒ min Γ1(v) = Γ1(V0, T = 0) ≈
[

σ
2

V0

]1
2 T

5
2

H

A(Sr, tr) = Sα(tr)
r

Here Sr is invar. mass square, and tr is momentum transfered square.

Meaning: in complex S-plane (physical one) ⇒

α(Sr) = J is a resonance spin at its position S = Sr!

19



Width Estimate Sensitivity 
8

TABLE I: The values of the resonance width for different
models. Model A corresponds to the SU(2)C pure gluody-
namics of Ref. [45]. Model B describes the SU(3)C LQCD
with 2 quark flavors [46] and Model C is the SU(3)C LQCD
with 3 quark flavors [50].

Model 90σ
π2 Tc ΓR(V0, 0) ΓR(V0, TH)

Ref. d.o.f. (MeV) (MeV) (MeV)

A 6 170 410 1420

A 6 200 616 2133

B 37 170 391 1355

B 37 200 587 2034

C 95
2 196 596 2066

at large T . Thus, there is only a single possibility to
match Eq. (20) with the LQCD data, namely to iden-
tify the last term in the right hand side of (20) with the
Boltzmann limit of the LQCD pressure at T ! TH . This
condition fixes the value of TH :

ã1

3 T 3
H

= σ ≡ 95
180

π2 ⇒ TH =
[

ã1

3 σ

] 1
3

≈ 180 MeV.

(21)

Matching p+ and pQGP (20) and expanding the logarith-
mic function at T = TH , one can find the width coeffi-
cient for T ≥ c± TH as

γ2
+ = 2β−1

[
σTHT (T 2 + TTH + T 2

H)−B(T )

+ ã0 T 4
∑

k=0

(−1)k

k + 1

(
T − TH

TH

)k ]
. (22)

Note that in evaluating the pressure (20) the coefficient
ã1 was reexpressed with the help of Eq. (21).

Like in a previous case, it is necessary that (T − TH)
is a divisor of the difference staying in the square brack-
ets in (22). Again here we would like to consider the
simplest possibility satisfying the necessary condition for
T ≥ c± TH :

B(T ) = σT 2
H(T 2 + TTH + T 2

H) + ã0T
4−lT l

H , (23)

where power l can be 0; 1; 2; 3 or 4.
Substituting (23) into (22) one finds

γ2
+ = 2TTH

[
σTH(T 2 + TTH + T 2

H) + ã0 T 4−l [T l − T l
H ]

T − TH

− ã0 T 4

TH

∑

k=0

(−1)k

k + 2

(
T − TH

TH

)k ]
. (24)

Assume now that the expressions for the pressure (20)
and the mass density of bags (23) are valid for T < c± TH

as well. These assumptions allow us to find the width
coefficient in the region T < c± TH

γ2
− =

B(T )2

2 [σ(T 3
H − T 3) + ã0T 3 ln[TH/T ]]

. (25)

Taking the limit T → 0 in (25) one finds the width coef-
ficient at zero temperature as

γ2
−(T = 0) =

[σ + ã0 δl,4]
2

2σ
T 5

H , (26)

where δl,k denotes the Kronecker symbol. The last re-
sult shows that the logarithmic term in the pressure (20)
modifies our previous estimates for the width coefficient
at T = 0 by about 10 % for l = 4 only. The corrections
of the same order of magnitude are generated by B(T )
(23) at T = TH :

γ2
+(T = TH) = 2 [3 σ − l ã0] T 5

H . (27)

Thus, the resonance width values given in Table I remain
almost the same for the pressure (20).

VII. WIDTH FOR A SINGULAR CASE

Now we consider the case of a divergent behavior of
B(T ) at low temperatures. Perhaps, this is the least
probable case, but it cannot be ruled out by the present
LQCD data. The point is that these data provide us
with the pressure of both phases whereas to match the
pressure p− (15) one needs to know the pressure of QGP
in the domain of hadronic phase existence. Therefore,
it is possible that the negative entropy density gener-
ated at T = 0 by the linear T -term of the pressure pa

of [47] and (20) evidences for another T -behavior at low
temperatures. This case is also interesting because it cor-
responds to another way of extrapolation which employs
more freedom to choose the width coefficient than the
one presented earlier.

Let us for T ≥ c± TH cast the pressure p+ as

p+ = σ (T − TH) ϕ(T ) , (28)

where the positive function ϕ(T ) is found from the LQCD
data or from some microscopic model. Then inverting
(11) one finds the width coefficient for T ≥ c± TH

γ2
+ =

2 TT 2
H

T − TH

[
σ ϕ(T )− B(T )

TH

]
. (29)

Now the function B(T ) can be chosen quite generally as

B(T ) = σ TH [ϕ(T )− (T − TH)X] , (30)

where the unknown function X > 0 must only provide
the positive values of B(T ) for all temperatures.

SU(2)c    pure 
gluodynamics

SU(3)c  LQCD  
2 q flavors

SU(3)c  LQCD  
3 q flavors

Bielefeld data,
finite-size effects
are accounted for

Bielefeld+BNL+
Copenhagen data, 

no FSE, but large lattices!

at T=0 at T=Th

17

Statistical probability of QGP phase

wQ = e
pQ V

T

e
pQ V

T +e
pH V

T

, pQ [pH] – Q [H] phase pressure;

V – system volume; T – temperature

RHIC and NICA are planned to search for the mixed phase,

but there are TWO MIXED PHASES! 1) deconfinement mixed phase;
2) cross-over mixed phase

Difference:

1) deconfinement:
concentration changes
at fixed T, µ, pQ

2)cross-over:
concentration changes
by varying T, µ, pQ

wQ = 0 wQ = 1 wQ = 1
2

wQ < 1

σ(T ) =






σ0 ·
[

Tc−T
Tc

]ζ

, T ≤ Tc , ζFDM = 1, ζSMM = 5
4
, σ0 > 0

0, T > Tc .

Also one can find supremum and infimum for surface F and surface partition

σ0(1 − λLT ) v
2
3 ≥ F ≥ σ0(1 − λUT ) v

2
3 , λL ≈ 0.28 T −1

c , λU ≈ 1.06 T −1
c

This is Gas of Bags Model with surface tension of QGP bags

σ(T ) = σ0 ·
[

Tc−T
Tc

]2k+1

k = 0, 1, 2, . . .

Now Tc can be function of µ!

σ(T, µ) = 0 σ(T, µ) > 0 σ(T, µ) < 0 V0 = 1 fm3

Bielefeld data,
finite-size effects
are accounted for

20



Width Estimate Sensitivity 
8

TABLE I: The values of the resonance width for different
models. Model A corresponds to the SU(2)C pure gluody-
namics of Ref. [45]. Model B describes the SU(3)C LQCD
with 2 quark flavors [46] and Model C is the SU(3)C LQCD
with 3 quark flavors [50].

Model 90σ
π2 Tc ΓR(V0, 0) ΓR(V0, TH)

Ref. d.o.f. (MeV) (MeV) (MeV)

A 6 170 410 1420

A 6 200 616 2133

B 37 170 391 1355

B 37 200 587 2034

C 95
2 196 596 2066

at large T . Thus, there is only a single possibility to
match Eq. (20) with the LQCD data, namely to iden-
tify the last term in the right hand side of (20) with the
Boltzmann limit of the LQCD pressure at T ! TH . This
condition fixes the value of TH :

ã1

3 T 3
H

= σ ≡ 95
180

π2 ⇒ TH =
[

ã1

3 σ

] 1
3

≈ 180 MeV.

(21)

Matching p+ and pQGP (20) and expanding the logarith-
mic function at T = TH , one can find the width coeffi-
cient for T ≥ c± TH as

γ2
+ = 2β−1

[
σTHT (T 2 + TTH + T 2

H)−B(T )

+ ã0 T 4
∑

k=0

(−1)k

k + 1

(
T − TH

TH

)k ]
. (22)

Note that in evaluating the pressure (20) the coefficient
ã1 was reexpressed with the help of Eq. (21).

Like in a previous case, it is necessary that (T − TH)
is a divisor of the difference staying in the square brack-
ets in (22). Again here we would like to consider the
simplest possibility satisfying the necessary condition for
T ≥ c± TH :

B(T ) = σT 2
H(T 2 + TTH + T 2

H) + ã0T
4−lT l

H , (23)

where power l can be 0; 1; 2; 3 or 4.
Substituting (23) into (22) one finds

γ2
+ = 2TTH

[
σTH(T 2 + TTH + T 2

H) + ã0 T 4−l [T l − T l
H ]

T − TH

− ã0 T 4

TH

∑

k=0

(−1)k

k + 2

(
T − TH

TH

)k ]
. (24)

Assume now that the expressions for the pressure (20)
and the mass density of bags (23) are valid for T < c± TH

as well. These assumptions allow us to find the width
coefficient in the region T < c± TH

γ2
− =

B(T )2

2 [σ(T 3
H − T 3) + ã0T 3 ln[TH/T ]]

. (25)

Taking the limit T → 0 in (25) one finds the width coef-
ficient at zero temperature as

γ2
−(T = 0) =

[σ + ã0 δl,4]
2

2σ
T 5

H , (26)

where δl,k denotes the Kronecker symbol. The last re-
sult shows that the logarithmic term in the pressure (20)
modifies our previous estimates for the width coefficient
at T = 0 by about 10 % for l = 4 only. The corrections
of the same order of magnitude are generated by B(T )
(23) at T = TH :

γ2
+(T = TH) = 2 [3 σ − l ã0] T 5

H . (27)

Thus, the resonance width values given in Table I remain
almost the same for the pressure (20).

VII. WIDTH FOR A SINGULAR CASE

Now we consider the case of a divergent behavior of
B(T ) at low temperatures. Perhaps, this is the least
probable case, but it cannot be ruled out by the present
LQCD data. The point is that these data provide us
with the pressure of both phases whereas to match the
pressure p− (15) one needs to know the pressure of QGP
in the domain of hadronic phase existence. Therefore,
it is possible that the negative entropy density gener-
ated at T = 0 by the linear T -term of the pressure pa

of [47] and (20) evidences for another T -behavior at low
temperatures. This case is also interesting because it cor-
responds to another way of extrapolation which employs
more freedom to choose the width coefficient than the
one presented earlier.

Let us for T ≥ c± TH cast the pressure p+ as

p+ = σ (T − TH) ϕ(T ) , (28)

where the positive function ϕ(T ) is found from the LQCD
data or from some microscopic model. Then inverting
(11) one finds the width coefficient for T ≥ c± TH

γ2
+ =

2 TT 2
H

T − TH

[
σ ϕ(T )− B(T )

TH

]
. (29)

Now the function B(T ) can be chosen quite generally as

B(T ) = σ TH [ϕ(T )− (T − TH)X] , (30)

where the unknown function X > 0 must only provide
the positive values of B(T ) for all temperatures.

SU(2)c    pure 
gluodynamics

SU(3)c  LQCD  
2 q flavors

SU(3)c  LQCD  
3 q flavors

Bielefeld data,
finite-size effects
are accounted for

Bielefeld+BNL+
Copenhagen data, 

no FSE, but large lattices! Width of QGP bags is very stable against dof 
number! Strong argument in favor of B-ansatz.

Strongly depends on T and at Tc!

QGP bags with so large width cannot be observed!

at T=0 at T=Th

17

Statistical probability of QGP phase

wQ = e
pQ V

T

e
pQ V

T +e
pH V

T

, pQ [pH] – Q [H] phase pressure;

V – system volume; T – temperature

RHIC and NICA are planned to search for the mixed phase,

but there are TWO MIXED PHASES! 1) deconfinement mixed phase;
2) cross-over mixed phase

Difference:

1) deconfinement:
concentration changes
at fixed T, µ, pQ

2)cross-over:
concentration changes
by varying T, µ, pQ

wQ = 0 wQ = 1 wQ = 1
2

wQ < 1

σ(T ) =






σ0 ·
[

Tc−T
Tc

]ζ

, T ≤ Tc , ζFDM = 1, ζSMM = 5
4
, σ0 > 0

0, T > Tc .

Also one can find supremum and infimum for surface F and surface partition

σ0(1 − λLT ) v
2
3 ≥ F ≥ σ0(1 − λUT ) v

2
3 , λL ≈ 0.28 T −1

c , λU ≈ 1.06 T −1
c

This is Gas of Bags Model with surface tension of QGP bags

σ(T ) = σ0 ·
[

Tc−T
Tc

]2k+1

k = 0, 1, 2, . . .

Now Tc can be function of µ!

σ(T, µ) = 0 σ(T, µ) > 0 σ(T, µ) < 0 V0 = 1 fm3

Bielefeld data,
finite-size effects
are accounted for
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What is the Regge trajectory
For such h + h into h + h reaction 

the amplitude A is 

I.e. there is an exchange of the trajectory! 

20

• Consider the finite width of resonances Γ(v) = Γ1(v) and the model pressure

pa = σT 4 − A1T : for T → ∞ ⇒ pa → σT 4,
but for T → 0 ⇒ pa → −A1T

Compare this with
p+ = T

[
βB + 1

2
γ2β2

]
for T ≥ α TH and p− = −T B2

2 γ2 for T < α TH

⇒ Idea: for all T ≤ α TH ⇒ B(T ) ≈ BMIT ( up to small correction T 3)

⇐⇒ For vanishing width the QGP bag pressure is MIT Bag model pressure,

while finite width generates T -linear pressure!

⇒ B(T ) = σT 2
H(T 2

H + THT + T 2) for any T ≤ TH

⇒ γ2 = 2 TσT 2
H(T 2 + TTH + T 2

H) ≡ 2 T B(T )

⇒ 〈m〉
v

= B(T )
[

2 T
TH

− 1
]

; α = 0.5

⇒ γ2
0 = B2

0

2A1
= 1

2
THB0 = σ

2
T 5

H ⇒ min Γ1(v) = Γ1(V0, T = 0) ≈
[

σ
2

V0

]1
2 T

5
2

H

A(S, t) = Sα(t)

Here Sr is invar. mass square, and tr is momentum transfered square.

Meaning: in complex S-plane (physical one) ⇒

α(Sr) = J is a resonance spin at its position S = Sr!
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• Consider the finite width of resonances Γ(v) = Γ1(v) and the model pressure

pa = σT 4 − A1T : for T → ∞ ⇒ pa → σT 4,
but for T → 0 ⇒ pa → −A1T

Compare this with
p+ = T

[
βB + 1

2
γ2β2

]
for T ≥ α TH and p− = −T B2

2 γ2 for T < α TH

⇒ Idea: for all T ≤ α TH ⇒ B(T ) ≈ BMIT ( up to small correction T 3)

⇐⇒ For vanishing width the QGP bag pressure is MIT Bag model pressure,

while finite width generates T -linear pressure!

⇒ B(T ) = σT 2
H(T 2

H + THT + T 2) for any T ≤ TH

⇒ γ2 = 2 TσT 2
H(T 2 + TTH + T 2

H) ≡ 2 T B(T )

⇒ 〈m〉
v

= B(T )
[

2 T
TH

− 1
]

; α = 0.5

⇒ γ2
0 = B2

0

2A1
= 1

2
THB0 = σ

2
T 5

H ⇒ min Γ1(v) = Γ1(V0, T = 0) ≈
[

σ
2

V0

]1
2 T

5
2

H

A(S, t) = Sα(t)

Here S is invar. mass square, and t is momentum transfered square

Meaning: in complex S-plane (physical one) ⇒

α(Sr) = J is a resonance spin at its position S = Sr!
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Can We relate FWM to Regge trajectories? 12

Asymptotic behavior |Sr| → ∞ of the Regge trajectories was studied in detail
by Trushevsky, UJP 22 (1977)

Sr is Invariant Mass Square of 2 hadrons ⇒ Sr > 4 Mass2

It was found an asymptotic behavior α(Sr) = −γr[−Sr]ν · f(Sr) with 1
2

≤ ν ≤ 1 only!

Here γr = const > 0, for |Sr| →∞ function f(Sr) must grow slower than any power of |Sr|

Writing Sr = |Sr|eiφ and energy
√

Sr = Mr − i
2
Γr

⇒ Γr

Mr
= −2 tg

(
φ
2

)
at the line Im α(Sr) = 0

α(Sr) relates width and mass, ⇒ it would be nice to compare it with FWM results!

Directly this is impossible since in FWM v (i.e. Γ(v)) and m of bag
are independent variables!

Indirectly, this can be done for the mean mass.

m(v) ≡
∞∫

M0

dm

∫
d3k

(2π)3
ρ(m, v) m e−

√
k2+m2

T




∞∫

M0

dm

∫
d3k

(2π)3
ρ(m, v) e−

√
k2+m2

T




−1

Note, another way of averaging is technically bit more complicated!

As was shown for T ≥ α TH with α < 1 the most probable mass 〈m〉 ≡ Bv + Γ2(v)β > 0

⇒ in this case m(v) ≈ 〈m〉 and Γ1(v) = Γ1(〈m〉) = γ
√

〈m〉
B+γ2β

⇒

For Γ1(〈m〉) → ∞ ⇒ Γ1(〈m〉)
〈m〉 = γ√

(B+γ2β)〈m〉
→ 0

This exactly corresponds to the upper limit of the Regge trajectory behavior ν = 1!

Moreover, Trushevsky’s example α(Sr) = γr[Sr + a(−Sr)p] with a < 0 and p = 3
4

exactly corresponds to FWM with Γr = 2
√

2 ln 2 Γ1(〈m〉) and |Sr| ≈ 〈m〉2 ≈ m2 :

From α(Sr)

∣∣∣∣
|Sr|→∞

= γr

[
|Sr|eiφ + a eiπp |Sr|p eiφp

]
= γr|Sr|

[
cos φ + i sin φ + ia

sin p(φ− π)

|Sr|(1−p)

︸ ︷︷ ︸
Imα=0

+ . . .

]

⇒ φ = a sin πp
|Sr|(1−p) → 0− for a < 0 ⇒ Γr

Mr
= −2 tgφ

2 ≈ −φ ≈ |a| sin πp
|Sr|(1−p)

⇒ |a| = 2
√

2 ln 2 γ√
(B+γ2β) sin 3

4π
and spin of these bags is JM

∣∣
ν=1

= Re α(M2
r ) ≈ γr〈m〉[〈m〉 − 0.25a2]

This is remarkable fact since the medium dependent width of extended QGP bags

obeys the upper limit of the asymptotic behavior obtained for point-like hadrons!
The same result is obtained for other way of averaging, but for the QGP phase!
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Regge trajectory of free QGP bags

12

Asymptotic behavior |Sr| → ∞ of the Regge trajectories was studied in detail
by Trushevsky, UJP 22 (1977)

Sr is Invariant Mass Square of 2 hadrons ⇒ Sr > 4 Mass2

It was found an asymptotic behavior α(Sr) = −γr[−Sr]ν · f(Sr) with 1
2

≤ ν ≤ 1 only!

Here γr = const > 0, for |Sr|→∞ function f(Sr) must grow slower than any power of |Sr|

Writing Sr = |Sr|eiφ and energy
√

Sr = Mr − i
2
Γr

⇒ Γr

Mr
= −2 tg

(
φ
2

)
at the line Im α(Sr) = 0

α(Sr) relates width and mass,⇒ it would be nice to compare it with FWM results!

Directly this is impossible since in FWM v (i.e. Γ(v)) and m of bag
are independent variables!

Indirectly, this can be done for the mean mass.

m(v) ≡
∞∫

M0

dm

∫
d3k

(2π)3
ρ(m, v) m e−

√
k2+m2

T




∞∫

M0

dm

∫
d3k

(2π)3
ρ(m, v) e−

√
k2+m2

T




−1

Note, another way of averaging is technically bit more complicated!

Use averaging with respect to volume for free bags (no thermostate, no interaction):

⇒ Γ1(v) ≈ Γ1(m/B) = γ
√m

B

For Γ1(m) → ∞ ⇒ Γ1(m)
m

= γ√
B m

→ 0

This exactly corresponds to the upper limit of the Regge trajectory behavior ν = 1!

Moreover, Trushevsky’s example α(Sr) = γr[Sr + a(−Sr)p] with a < 0 and p = 3
4

exactly corresponds to FWM free bags with Γr = 2
√

2 ln 2 Γ1(m) and |Sr| ≈ m2 :

From α(Sr)

∣∣∣∣
|Sr|→∞

= γr

[
|Sr|eiφ + a eiπp |Sr|p eiφp

]
= γr|Sr|

[
cos φ + i sin φ + ia

sin p(φ− π)

|Sr|(1−p)

︸ ︷︷ ︸
Imα=0

+ . . .

]

⇒ φ = a sin πp
|Sr|(1−p) → 0− for a < 0

⇒ Γr

Mr
= −2 tgφ

2 ≈ −φ ≈ |a| sin πp
|Sr|(1−p) and ⇒ afree = − 2

√
2 ln 2 γ√

B sin 3
4π
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Regge trajectory of free QGP bags
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2

≤ ν ≤ 1 only!

Here γr = const > 0, for |Sr|→∞ function f(Sr) must grow slower than any power of |Sr|

Writing Sr = |Sr|eiφ and energy
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2
Γr

⇒ Γr

Mr
= −2 tg
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2

)
at the line Im α(Sr) = 0

α(Sr) relates width and mass,⇒ it would be nice to compare it with FWM results!

Directly this is impossible since in FWM v (i.e. Γ(v)) and m of bag
are independent variables!

Indirectly, this can be done for the mean mass.

m(v) ≡
∞∫

M0

dm

∫
d3k

(2π)3
ρ(m, v) m e−

√
k2+m2

T




∞∫

M0

dm

∫
d3k

(2π)3
ρ(m, v) e−

√
k2+m2

T




−1

Note, another way of averaging is technically bit more complicated!

Use averaging with respect to volume for free bags (no thermostate, no interaction):

⇒ Γ1(v) ≈ Γ1(m/B) = γ
√m

B

For Γ1(m) → ∞ ⇒ Γ1(m)
m

= γ√
B m

→ 0

This exactly corresponds to the upper limit of the Regge trajectory behavior ν = 1!

Moreover, Trushevsky’s example α(Sr) = γr[Sr + a(−Sr)p] with a < 0 and p = 3
4

exactly corresponds to FWM free bags with Γr = 2
√

2 ln 2 Γ1(m) and |Sr| ≈ m2 :

From α(Sr)

∣∣∣∣
|Sr|→∞

= γr

[
|Sr|eiφ + a eiπp |Sr|p eiφp

]
= γr|Sr|

[
cos φ + i sin φ + ia

sin p(φ− π)

|Sr|(1−p)

︸ ︷︷ ︸
Imα=0

+ . . .

]

⇒ φ = a sin πp
|Sr|(1−p) → 0− for a < 0

⇒ Γr

Mr
= −2 tgφ

2 ≈ −φ ≈ |a| sin πp
|Sr|(1−p) and ⇒ afree = − 2

√
2 ln 2 γ√

B sin 3
4π
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This conclusion is justified and supported by several models:

by Veneziano model, by open/close string model and

by AdS CFT QCD

But FWM also determines the width of large/heavy QGP

As was shown for T ≥ α TH with α < 1 the most probable mass 〈m〉 ≡ Bv + Γ2(v)β > 0

⇒ in this case m(v) ≈ 〈m〉 and Γ1(v) = Γ1(〈m〉) = γ
√

〈m〉
B+γ2β

⇒

For Γ1(〈m〉) → ∞ ⇒ Γ1(〈m〉)
〈m〉 = γ√

(B+γ2β)〈m〉
→ 0

This exactly corresponds to the upper limit of the Regge trajectory behavior ν = 1!

α(Sr) = γr[Sr + a(−Sr)p] with a < 0 and p = 3
4

like for free bags, but for 〈m〉!

exactly corresponds to FWM with Γr = 2
√

2 ln 2 Γ1(〈m〉) and |Sr| ≈ 〈m〉2 ≈ m2 :

⇒ a = − 2
√

2 ln 2 γ√
(B+γ2β) sin 3

4
π

= −4
√

2 T TH

2 T−TH
ln 2

⇒ Γr = |a|
√

〈m〉
2 → ∞ for T → 0.5 TH + 0

This is remarkable result since the medium dependent width of extended QGP bags

obeys the upper limit of the asymptotic behavior obtained for point-like hadrons!

The same result is obtained for other way of averaging!

23



Use the same logic at high T 

13

This conclusion is justified and supported by several models:

Veneziano, by open/close string model and by AdS CFT QCD

But FWM also determines the width of large/heavy QGP

As was shown for T ≥ α TH with α < 1 the most probable mass 〈m〉 ≡ Bv + Γ2(v)β > 0

⇒ in this case m(v) ≈ 〈m〉 and Γ1(v) = Γ1(〈m〉) = γ
√

〈m〉
B+γ2β

⇒

For Γ1(〈m〉) → ∞ ⇒ Γ1(〈m〉)
〈m〉 = γ√

(B+γ2β)〈m〉
→ 0

This exactly corresponds to the upper limit of the Regge trajectory behavior ν = 1!

α(Sr) = γr[Sr + a(−Sr)p] with a < 0 and p = 3
4

like for free bags, but for 〈m〉!

exactly corresponds to FWM with Γr = 2
√

2 ln 2 Γ1(〈m〉) and |Sr| ≈ 〈m〉2 ≈ m2 :

⇒ a = − 2
√

2 ln 2 γ√
(B+γ2β) sin 3

4
π

= −4
√

2 T TH

2 T−TH
ln 2

⇒ Γr = |a|
√

〈m〉
2 → ∞ for T → 0.5 TH + 0

This is remarkable result since the medium dependent width of extended QGP bags

obeys the upper limit of the asymptotic behavior obtained for point-like hadrons!

The same result is obtained for other way of averaging, but for the QGP phase!

Might be interesting for A+A collisions at low energies
 (CBM, NICA)
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Low T case
14

The case T < α TH with α < 1 opens the new possibility since

the most probable mass 〈m〉 ≡ Bv + Γ2(v)β < 0

⇒ in this case m(v) ≈ M0 = Const of v and Γ1(v) = γ
√

v ⇒

For Γ1(v) → ∞ ⇒ Γ1(v)
M0

= γ
√

v
M0

→ ∞

This exactly corresponds to the lower limit of the Regge trajectory behavior ν = 1
2
!

For Sr → +∞ Trushevsky’s asymptotic α(Sr) = −γr[−Sr]
1
2 + Cα with Cα > 0

−i γr |Sr|
1
2 + Cα ⇔ − i

2
2
√

2 ln 2 Γ1(v) + M0 ⇒ is identical to FWM case 〈m〉 < 0!

Γr ≈ 2 |Sr|
1
2 , Cα = γr M0 and v = 1

γ2 2 ln 2
|Sr|

Surprisingly, the low T mean mass and medium width of the extended QGP bags

not only corresponds to the asymptotic behavior of point-like hadrons, but also

the Subthreshold Suppression of QGP bags removes the contradiction between

the Hagedorn and Regge ideas! Transition from 〈m〉 < 0 regime to 〈m〉 > 0

regime is a transition from ν = 1
2

to ν = 1 asymptotics!

• Consider stable resonances Γ(v) = 0 and MIT bag model

⇒ p+ = TβB and 〈m〉 = Bv > 0 ⇒ there is no subthreshold
suppression.

Equating p+ = TβB with pbag ≡ σT 4 − Bbag ⇒ Bbag = σT 4
H and

the most probable mass density 〈m〉
v

≡ B = σTH(T + TH)(T 2 + T 2
H)
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Conclusions 
The finite medium dependent width is introduced into statistical model of  QGP 
bags. The model has the Hagedorn-like mass spectrum of heavy bags, but their large 
width make them hard to observe.  This explains a huge deficit in the number of 
heavy hadronic resonances (resolves the second problem).

For high and low T  we derived the general form of the QGP bag’s pressure. For low 
T the model predicts the existence of subthreshold suppression of QGP bags since 
their most probable mass becomes negative. 

This resolves the main conceptual problem and explains the reason why the QGP 
bags and strangelets cannot be observed at low T even as metastable states. 

The model allows one to estimate width of QGP bags from LQCD and find it rather 
large which makes them hard be observed.

The model establishes the Regge trajectories of  large QGP bags, shows that these 
trajectories have statistical nature. For the first time we have a model in which QGP 
bags correspond to the linear trajectory at high T and the square root one at low T. 
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Thanks for your attention!
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In a Finite System, however...

Typical example: 
strangelets

7

• Volume and mass integrals in F (s, T ) acquire finite upper limits: Vmax and Mmax

⇒ For finite v the statistical suppression of QGP bags in hadronic phase
is not about Avogadro number, but a few orders of magnitude!

⇒ finite v QGP bags can exist in hadronic phase as metastable states!

• Finite volume solution of GBM, K.A.B., Phys. Part. Nucl. 38 (2007), allows one

To show that for small V the finite QGP bags are not suppressed anymore!

To estimate a decay (formation) time of metastable states (n = 1, 2, 3, ...)

τn ≈
Vmax

πn V0 T
≈

60 Vmax[fm · MeV]
nV0 T [MeV]

⇒ at low T # Tc the n ≥ 1 states with finite QGP bags could exist very long time!

⇒ for small V the finite QGP bags could coexist with hadrons!

• Moreover, since initial stage of collision is not equilibrated ⇒ nothing can prevent
the formation of metastable QGP bags in the hadronic phase!

⇒ Since the QGP bags were not observed at T < Tc, there must exist a reason for that!
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