Extreme States of Matter by Intense Heavy Ion Beams

Presented by:

Serban Udrea

Technical University Darmstadt & Plasma Physics Group, GSI Darmstadt

Extreme states of matter:

(don't take the limits too strict)

- T ~ 0.1 to 50 eV (melting of Fe ≈ 0.16 eV)
- $\rho \sim 0.1$ to 100 g/cm³ (1 g/cm³ for usual Water)
- p ~ kbar, Mbar, ...
- E > 1 kJ/g

Getting a feeling

GSI

1 kJ/g is approximately needed to heat and melt for instance Fe or AI, starting at room temperature.

What about storage?

(of 1 kJ for or as a result of pulsed power experiments)

Three examples

 Capacitive
 Motion
 Inductive

 45 kV @ 1 μF
 1.4 km/s @ 10⁻³ kg
 1.4 kA @ 1 mH

Plasma physics, atomic physics, thermophysics

fundamental properties of matter in unexplored regions of the phase diagram: equation-of-state, exotic phase transitions, transport and optical properties, effects of strong inter-particle interaction, ...

Astrophysics and planetary sciences

brown dwarfs, pulsars, supernova explosions, structure of the earth and sun interior, giant and extra-solar planets

Energy research and inertial confinement fusion

fusion energy, portable nuclear and MHD reactors, safety of power plants

Technologies

material research, pulsed and high-temperature technologies, dynamic syntesis of new materials, space technologies, defence applications

TUD Drivers to generate extreme matter states

- Solid state (NIF, LULI, PHELIX, ...) and free electron lasers (FLASH)
- High explosives
- Particle accelerators (GSI, TWAC, NDCX)
- Rail guns
- Electromagnetic discharges (Z-Machine, ANGARA-5)

Highly versatile:

- Direct heating and expansion (HIHEX)
- Shock wave generation
- Strong, low entropy compression (LAPLAS)

GSI

Heavy ion vs. laser beams

Powerful lasers¹: energy is absorbed at the target surface (critical density) => shock wave, high gradients

1 - VUV, X-ray lasers or indirect heating allow for reduced gradients.

Intense ion beams: energy is deposited in the bulk of the target => quasi-isochoric heating

Beam parameters, whishlist

- High Z, since dE/dx ~ Z^2 , $Z_{\cup} = 92$
- Ion energy 50 1500 MeV/u
- •maximum beam intensity (number of ions per pulse) N ~ $10^9 10^{12}$
- •minimum pulse duration $\tau \sim 50 100$ ns => bunch compression
- minimum focal spot size at the target r_b

 reducing transverse emittance electron cooling
 special final focusing system

GSI	FAIR
0.4 AGeV	2.7 AGeV
5·10 ⁹	10 ¹²
0.06 kJ	38 kJ
100 ns	50 ns
0.5 GW	750 GW
<1 mm ²	1 mm ²
1 kJ/g	300 kJ/g
5 GW/g	6 TW/g
	GSI 0.4 AGeV 5.10 ⁹ 0.06 kJ 100 ns 0.5 GW <1 mm ² 1 kJ/g 5 GW/g

FAIR school, Moscow, Russia, Dec. 03 – 04 2010

The GSI accelerator facilities

The HHT cave

Typical experimental setup

FAIR school, Moscow, Russia, Dec. 03 – 04 2010

Beam diagnostics

Gas dynamics

beam profile

GSI

He

Space

Streak image by schlieren optics and simulation

Density profiles from simulation

FAIR school, Moscow, Russia, Dec. 03 – 04 2010

Ar

Target designs

GSI

Streak image of target dynamics

Space

Displacement interferometer

FAIR school, Moscow, Russia, Dec. 03 – 04 2010

TUD

TUD The pyrometer and reflectometry setups

Intensity monitor

Temperature measurement

FAIR school, Moscow, Russia, Dec. 03 – 04 2010

TUD DC electrical conductivity measurements

FAIR school, Moscow, Russia, Dec. 03 – 04 2010

TUD RF, non-contact conductivity measurements

FAIR school, Moscow, Russia, Dec. 03 – 04 2010

TUD RF, non-contact conductivity measurements

FAIR school, Moscow, Russia, Dec. 03 – 04 2010

TUD Proton radiography: basic interactions

Proton radiography principles

GSI

Transmission radiography with magnetic lenses has been developed at LANL (1995)

TUD Working principle of the magnetic lense

•stigmatic imaging lens

 initial beam is matched to have certain positionangle correlation

•same position-angle correlation which forms a Fourier plane at the center of the lens also cancels second order chromatic terms

Courtesy D. Varentsov (GSI)

Proton radiography measurement

PRIOR @ HHT

Proton energy: 4.5 GeV Spatial resolution: ≤10 µm Temporal resolution: 10 – 20 ns **Multi-framing:** 1 – 4 frames within 1 µs Target characteristics: up to 20 g/cm2 Areal density measurement: sub-percent level **Field of view:** 10 – 15 mm Stand-off distance: 1 – 1.5 m Proton illumination spot size: 3 – 15 mm Total length after object plane: less than 15 m

> **Collaboration:** GSI, TUD, ITEP Moscow, IPCP Chernogolovka, Los Alamos

GS

- intense heavy ion beams presently available at GSI as well as those to be provided at FAIR offer unique capabilities for the research of extreme matter states
- essential instruments and diagnostic methods are being developed and commissioned at HHT
- new accelerator facilities and experimental areas are needed
- the international community shall be further developed; young talented researches are wanted!