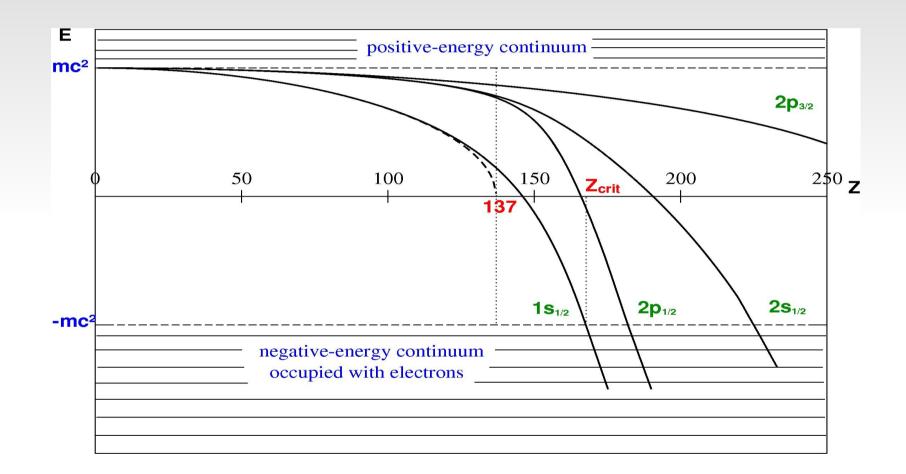
Relativistic Evaluation of the Charge-Transfer Probabilities and Cross Sections for Low-nergy Collisions of H-like Ions with Bare Nuclei

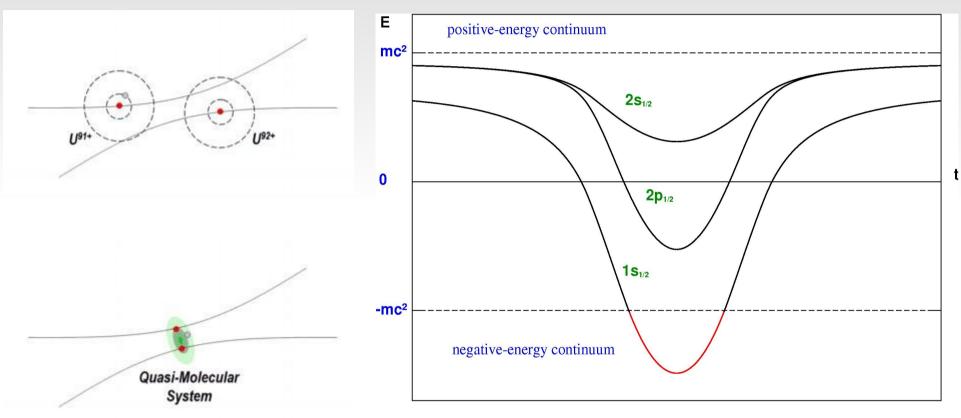
Yury Kozhedub


St. Petersburg State University

Outline:

- Introduction and motivation
- Theoretical description
- Numerical results
- Summary

Introduction


The *1s* level dives into the negative-energy continuum at $Z_{crit} \sim 173$.

[S.S. Gershtein, Ya.B. Zeldovich, 1969; W. Pieper, W. Greiner, 1969]

Motivation: super-heavy quasi-molecules

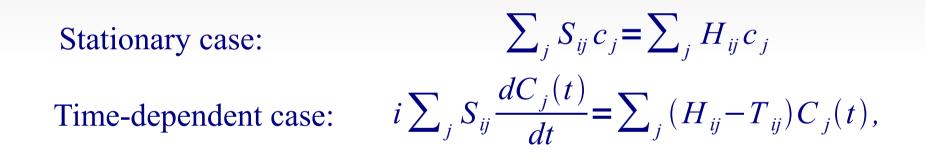
A way to create super-critical field is to collide two heavy ions with $Z_1+Z_2>173$.

Two center Dirac equation

Features of the investigated process:

- Low-energy ions: ~ 6 MeV/u for $U^{91+}-U^{92+}$
- Relativistic electron: $v_e \sim (\alpha Z)c$
- $m_e \ll M_{nucl} \rightarrow \text{Nuclei}(\mathbf{R}_A, \mathbf{R}_B)$ move according to the Rutherford trajectory

The time-dependent and stationary (for fixed R_{AB}) Dirac equations (in a.u.)


$$i\frac{d\Psi}{dt} = h_D \Psi(\vec{r}, t), \qquad h_D \psi_n(\vec{r}) = \varepsilon_n \psi_n(\vec{r}),$$
$$h_D = c(\vec{\alpha} \cdot \vec{p}) + \beta mc^2 + V_{AB}(\vec{r}),$$
where $\vec{\alpha}, \beta$ are the Dirac matrices, and $V_{AB}(\vec{r}) = V_{nucl}^{(A)}(\vec{r}_A) + V_{nucl}^{(B)}(\vec{r}_B),$

$$\vec{r}_A = \vec{r} - \vec{R}_A, \quad \vec{r}_B = \vec{r} - \vec{R}_B.$$

FAIR Russia Research Center, Obninsk

Finite Basis Expansion

$$\Psi(\vec{r}) = \sum_{i} c_{i} \varphi_{i}(\vec{r}),$$
$$\Psi(\vec{r}, t) = \sum_{i} C_{i}(t) \varphi_{i}(\vec{r})$$

where

$$H_{ij} = \langle \varphi_i | h_D | \varphi_j \rangle, \quad T_{ij} = i \langle \varphi_i | \frac{\partial}{\partial t} | \varphi_j \rangle, \quad S_{ij} = \langle \varphi_i | \varphi_j \rangle.$$

Basis set

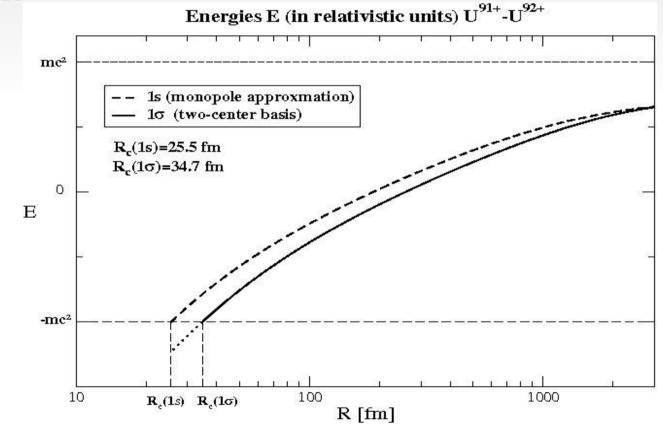
- Our basis is constructed as a sum of the Dirac and Dirac-Sturm orbitals, localized on each ion.
- The Dirac and Dirac-Sturm orbitals are obtained by solving numerically the finite-difference one-center Dirac and Dirac-Sturm equations.

$$\Psi(\vec{r},t) = \sum_{\alpha=A,B} \sum_{\mu} C_{\alpha,\mu}(t) \varphi_{\alpha,\mu}(\vec{r} - \vec{R}_{\alpha}(t))$$

 $\varphi_{\alpha,\mu}$ is the Dirac or the Dirac-Sturm orbital localized on the center α .

Basis set advantages

- Spectrum of the Dirac-Sturm operator is red discrete and complete (including functions of the negative Dirac spectrum).
- Relativistic DSO satisfy the dual kinetic balance condition [V. Shabaev et al., PRL 93, 130405 (2004)].
- DSO have correct asymptotic behavior when $r \to 0$ and $r \to \infty$.
- All DSO have approximately the same space scale, which does not depend on the principal quantum number *n*.
- Monopole approximation enables partly accounting for the potential of the second ion in constructing of the basis functions.


The Basis set

- Provides the natural satisfaction of the initial conditions.
- Allows one to evaluate the ionization cross section.
- Is perfect for describing the quasi-molecular states at small inter-nuclear distance. This is especially important for investigation of the diving effect.
- Posseses fast basis convergence, that significantly reduces the size of matrix problem and calculation time.

Energies of the $1\sigma_+$ ground states of quasimolecules

The $1\sigma_+$ state energy of the U₂¹⁸³⁺ quasi-molecule as a function of the internuclear distance *R*

FAIR Russia Research Center, Obninsk

Critical Distances R_c (fm)

	Point nucleus		Extended nucleus	
Z	This work	Others	This work	Others
88	24.27	24.24 ^a	19.91	19.4 ^d
90	30.96	30.96 ^a	27.06	26.5 ^d
92	38.43	38.4 ^b	34.74	34.7 ^b
		38.42 ^a		34.3 ^d
		36.8°		34.7 ^f
94	46.58	46.57 ^a	43.13	42.6 ^d
96	55.38	55.37 ^a	52.10	
98	64.79	64.79 ^a	61.61	61.0 ^d
				61.1 ^f

^a [V.I. Lisin et al., Phys. Lett. 69B, 2 (1977)]

^b[A. Artemyev et al., to be published]

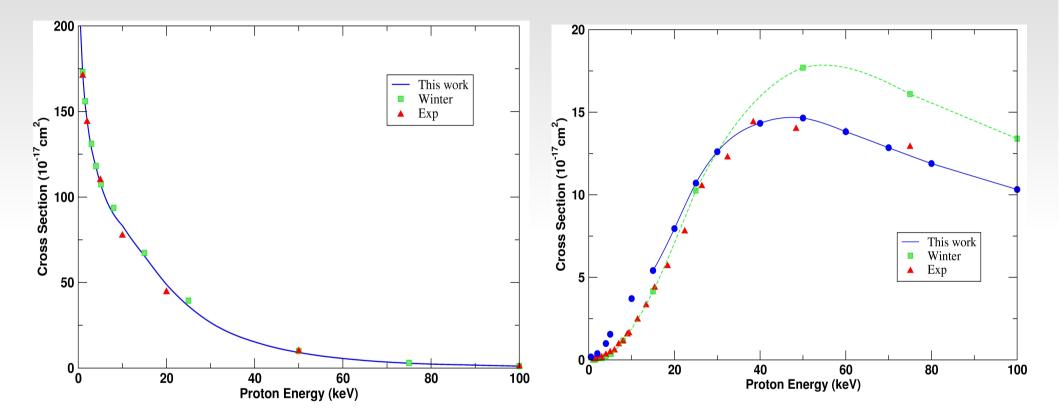
^c [J. Rafelski, B. Müller, Phys. Lett. 65B, 205 (1976)]

^d [V.I. Lisin et al., Phys. Lett. **91B**, 20 (1980)]

^f [B. Müller and W. Greiner, Z. Naturforsch. 3la, 1 (1975)]

FAIR Russia Research Center, Obninsk

$H(1s)-H^+$ collision


Charge-transfer probability as a function of the impact parameter b

Comparison with the results of work [W. Fritsch et al., Phys. Rep., 202, 1 (1991)]

$H(1s)-H^+$ collision

Charge-transfer and Ionization cross sections as functions of the collision energy

Other calculations [G. Winter, PRA **80**, 032701 (2009)] Experimental data [R. Janev et al., At. and Pl. Mat. Int. Data for Fusion, Nucl. Fusion Suppl **4** (1993); M. Shah et al., JPB **31**, L757 (1998); **20**, 2481 (1987)]

Z Scaling Transformation

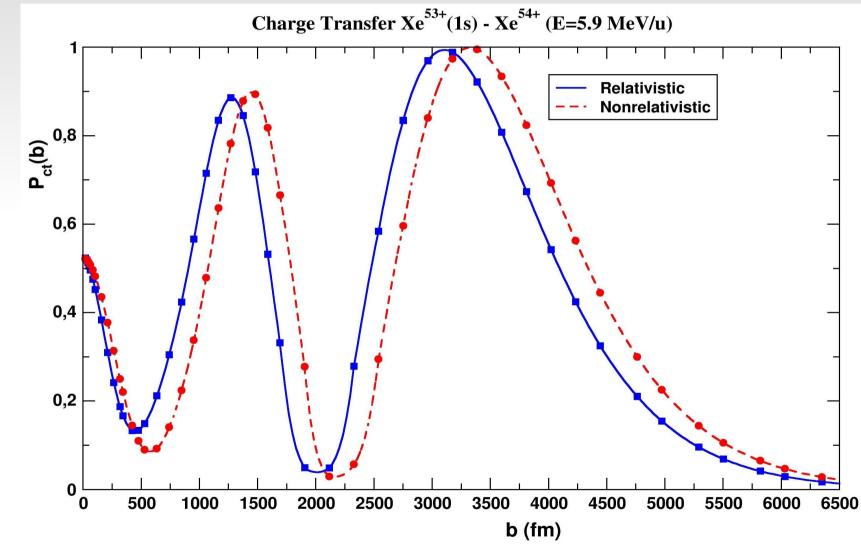
In the nonrelativistic case, using the scale transformation it is possible to establish a link between the charge-transfer parameters in the H(1s)-H⁺ and $A^{(Z-1)+}(1s)-A^{Z+}$ collisions $\vec{r'} = Z\vec{r}$ $\vec{R'}_A = Z\vec{R}_A$ $\vec{R'}_{R} = Z \vec{R}_{R}$ $= Z^2 t$ $E' = E/Z^2$ $\vec{V'_A} = \vec{V_A}/Z$ $_{R} = \vec{V}_{R}/Z$ $= \sigma Z$

$Ne^{10+}(1s)-Ne^{9+}$ collision

Charge-transfer cross section $\sigma_{ct} (10^{-17} \text{ cm}^2)$ for the Ne¹⁰⁺(*1s*)-Ne⁹⁺ and H(*1s*)-H⁺ collisions

	$H(1s)-H^+$			
Energy	$\sigma_{\rm ct} \cdot Z^2$	$\sigma_{\rm ct} \cdot Z^2$	$\sigma_{\rm ct} \cdot Z^2$	$\sigma_{ct} \cdot Z^2$
E/Z^2 (keV/u)	Rel.	Nonrel.	Born approx. ^a	
1.0	171.6	172.2	188.4	172.4
4.0	117.1	117.5	114.8	117.5
10.0	80.8	81.3	76.2	81.3
20.0	48.5	48.9	48.2	48.9

^a V. Shevelko, 2010


$Xe^{53+}(1s)-Xe^{54+}$ collision

Charge-transfer cross section $\sigma_{ct} (10^{-17} \text{ cm}^2)$ for the Xe⁵³⁺(*1s*)-Xe⁵⁴⁺ and H(*1s*)-H⁺ collisions

	$Xe^{54+}(1s)-Xe^{53+}$			$H(ls)-H^+$
E/Z^2	E	$\sigma_{ct} \cdot Z^2$	$\sigma_{\rm ct} \cdot Z^2$	$\sigma_{\rm ct} \cdot Z^2$
(keV/u)	(MeV/u)	Rel.	Nonrel.	
1.234 57	3.6	148.3	163.3	165.0
2.023 32	5.9	129.4	143.0	144.9
3.429 36	10.0	109.1	123.8	124.8
34.293 6	100.0	13.3	20.6	20.7

$Xe^{53+}(1s)-Xe^{54+}$ collision

Charge-transfer probability as a function of the impact parameter *b*, E=5.9 MeV/u

FAIR Russia Research Center, Obninsk

Summary

Conclusion:

- A new method employing the Dirac-Sturm basis functions for evaluation of various electron-excitation processes in low-energy heavy-ion collisions has been developed
- Relativistic calculations of the charge transfer for low-energy collisions of H-like ions with bare nuclei have been carried out

Outlook:

- Calculations of the charge-transfer probabilities at supercritical regime, $Z_1+Z_2 > 173$
- Investigation of a possibility of indirect observation of the diving effect

Thank You for Your Attention