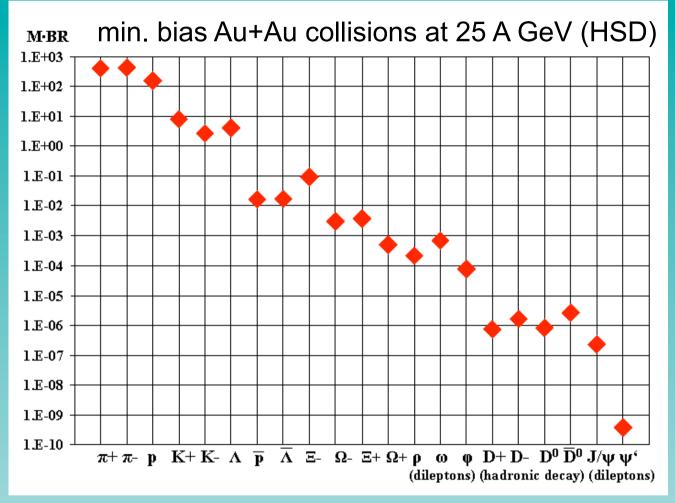

Progress in design optimization of CBM

Sergey Belogurov ITEP, Moscow


Outline

- Introduction
 - -Layout of the experiment
 - -Specific features and comparison to collider experiments
 - -Consequences of the fixed target scheme
- Closer look at Silicon Tracking System (STS)
 - Nature of data
 - Track finding in ideal case
 - Influence of realistic readout
 - What does layout optimization imply
 - An amusing piece of system engineering
 - Conceptual model of STS
- Conclusions

S. Belogurov, ITEP, Moscow school, Hirschegg, 15.02.11

school, Hirschegg, 15.02.11

The mission of CBM (one of) is to measure rare probes from dense matter. The methodology becomes close to one of low background physics (2 beta decay, dark matter): many improbable backgrounds able to mimic the signal should be studied and ruled out.

S. Belogurov, ITEP, Moscow school, Hirschegg, 15.02.11

CBM (fixed Target)

Vacuum in the $\sim 10^{-3}$ torr – just to avoid interaction zone discharges at MVD

Where high IR D comes from

Dense target

Energy

Beam spot

Can be lower Not too wide (beam pipe), not too small – spot ~ 5-8 mm allows to find double primary vertices Collider

~ $10^{-10...-11}$ torr - to avoid beam distortion by residual gas

Compact (in phase space) bunches

Should be high ($\epsilon \sim 1/\beta\gamma$)

The smaller the better

CBM (fixed Target)

~10⁻³ torr – just to avoid

Vacuum in the interaction zone

Where high IR E comes from

Dense target

discharges at MVD

Energy

Can be lower

Beam spot

Not too wide (beam pipe), not too small – spot ~ 5-8 mm allows to find double primary vertices

Collider

~ $10^{-10...-11}$ torr - to avoid beam distortion by residual gas

Compact (in phase space) bunches

Should be high ($\epsilon \sim 1/\beta\gamma$)

The smaller the better

CBM (fixed Target)

~10⁻³ torr – just to avoid Vacuum in the discharges at MVD interaction zone

Where high IR comes from

Energy

Beam spot

Dense target

Can be lower

Not too wide (beam pipe), not too small – spot ~ 5-8 mm allows to find double primary vertices

δ - electrons $\sim 2(>20 \text{ MeV})/\text{ passed ion - can}$ give extra hits. At SIS300 T_{max}~ 600 MeV measurable tracks

Collider

~ $10^{-10...-11}$ torr - to avoid beam distortion by residual gas

Compact (in phase space) bunches

Should be high ($\epsilon \sim 1/\beta\gamma$)

The smaller the better

No deltas from the interaction region

S. Belogurov, ITEP, Moscow school, Hirschegg, 15.02.11

CBM (fixed Target)

Vacuum in the $\sim 10^{-3}$ torr – just to avoid interaction zone discharges at MVD

Where high IR Dense target comes from

Energy

Beam spot

Can be lower

ot Not too wide (beam pipe), not too small – spot ~ 5-8 mm allows to find double primary vertices

δ- electrons ~2(>20 MeV)/ passed ion - can give extra hits. At SIS300 T_{max}~ 600 MeV – measurable tracks

Beam after Scattered in the target – affects Practic interactions beampipe and PSD. Then goes circula to beamdump

S. Belogurov, ITEP, Moscow school, Hirschegg, 15.02.11

Collider

~ $10^{-10...-11}$ torr - to avoid beam distortion by residual gas

Compact (in phase space) bunches

Should be high ($\epsilon \sim 1/\beta\gamma$)

The smaller the better

No deltas from the interaction region

Practically no change – kept circulating

Consequences of the fixed target scheme

1. PSD: centrality, reaction plane

1% target: ~100 ions passed per event.

- Beam divergence due to emittance $\sim 0.2^\circ$
- Beam hole at PSD ~ 0.3°

Theta > .deg

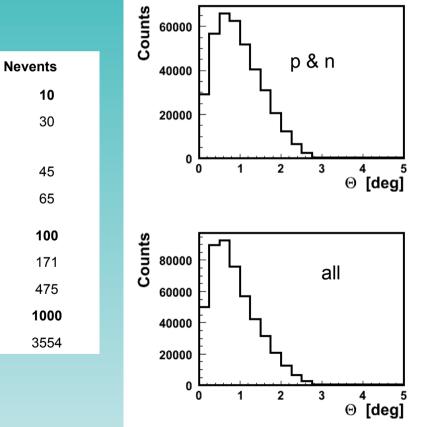
2,20

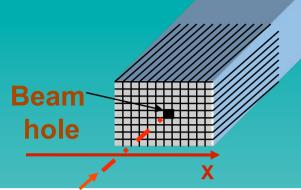
1,50

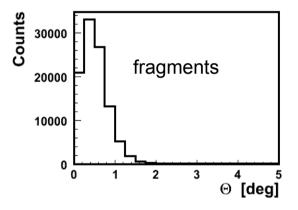
1,00

0.80

0,66

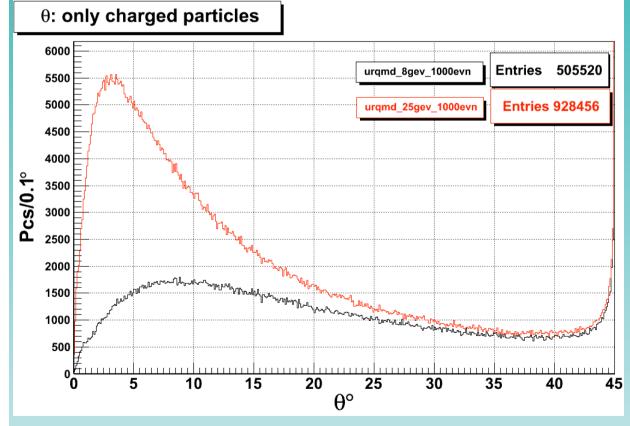

0,50

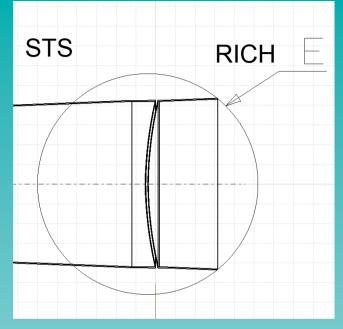

0,30


0,197

0,10

- Angular distribution for 10⁶ gold ions scattered in the 0.25 mm thick gold target at 8 AGeV/c

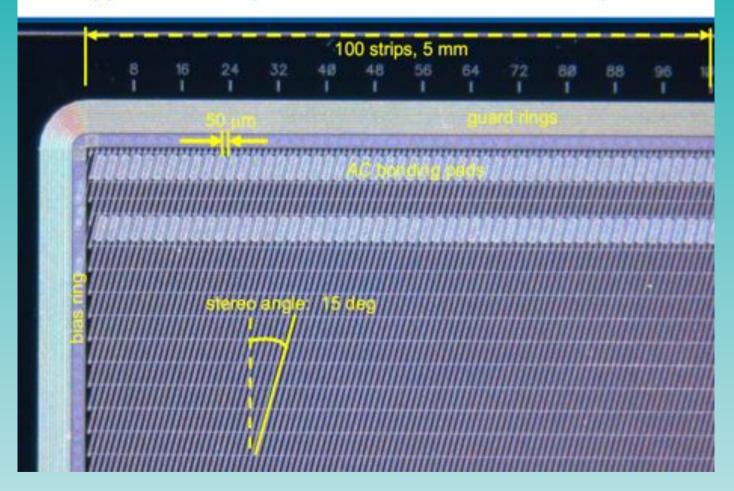



Au+Au @ 10 AGeV, SHIELD generater, 10000 events

S. Belogurov, ITEP, Moscow school, Hirschegg, 15.02.11

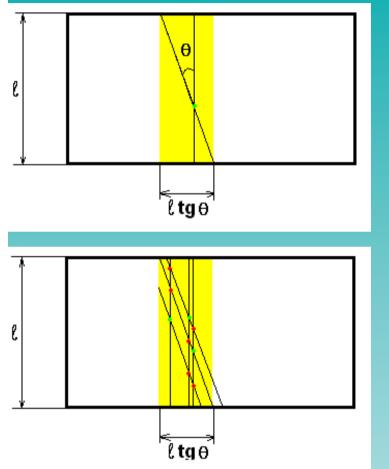
Consequences of the fixed target scheme

2. Windows in vacuum channel can be used (much thinner than the target). It is convenient for assembling.



3. Angular distribution of the reaction products is narrowed by relativistic boost of CM reference frame

S. Belogurov, ITEP, Moscow school, Hirschegg, 15.02.11


Nature of data: hits and fakes

Prototype microstrip detector CBM01 – close-up view

S. Belogurov, ITEP, Moscow school, Hirschegg, 15.02.11

Nature of data: hits and fakes

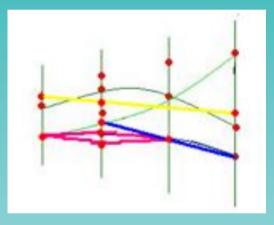
 n_{h} , n_{f} – surface density of hits and fakes

 $n_f \approx (n_h \cdot l^2 \cdot tg\theta)^2 / l^2 \cdot tg\theta = n_h^2 \cdot l^2 \cdot tg\theta)$

Decreasing θ one reduces fakes but spoils vertical resolution.

MF is mostly vertical $\rightarrow \Delta x$ converts into accuracy of momentum, Δy affects mostly attribution of the hits to the tracks and track merging.

S. Belogurov, ITEP, Moscow school, Hirschegg, 15.02.11


Closer look at Silicon Tracking System (STS) Track finding in an ideal case

TF procedure involves analysis of all possible (within reasonable margins) triplets of hits&fakes in successive 3 planes as seed candidates for tracks.

The bigger is combinatorics the longer and less efficient is procedure.

The shortest acceptable track has 4 hits in 4 successive planes.

In principle can be extended to missed hits – but number of combinations grows up.

S. Belogurov, ITEP, Moscow school, Hirschegg, 15.02.11

Track finding in an ideal case cut=30keV; eLoss=70keV; MaxInvMom=0.5/0.1/0.1=Default; NO MVD;

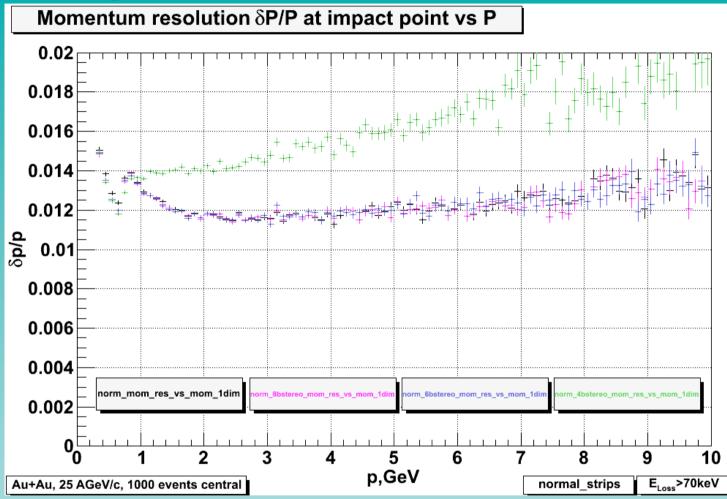
Pipe configuration: Be cone 2.3deg

Au+Au, 25 AGeV/c, 1000 events central:

STS	normal strips							short strips	
configuration	15deg bstereo	10deg bstereo	8deg bstereo	6deg bstereo	4deg bstereo	2deg bstereo	15deg bstereo	8deg bstereo	
Mean	909+2524	897+1668	897+1354	894+1032	885+703	860+367	905+1382	892+759	
hits+fakes	1010+5471	1007+3739	1005+3037	1002+2335	998+1619	979+870	998+3616	990+2037	
in stations 1,4,8	837+2203	839+1517	838+1236	836+952	833+671	825+382	828+2099	824+1162	
RefPrim Eff.	0,952 ± 0,001	0,961	0,964	0,966	0,934	0,913	0,965	0,975	
RefSec Eff.	0,796±0,005	0,820	0,832	0,842	0,81	0,793	0,828	0,863	
ExtraSec Eff.	0,496±0,009	0,540	0,56	0,581	0,57	0,565	0,497	0,573	
Clone Prob.	0,019±0,001	0,019	0,021	0,02	0,065	0,028	0,017	0,019	
Ghost Prob.	0,101±0,003	0,087	0,083	0,083	0,149	0,178	0,078	0,065	
MC tr/ev found	634±1	643	647	649	628	605	631	647	
TF time s/ev	2,931	1,496	1,122	0,792	0,698	0,481	2,605	1,016	

cut Ref>1GeV/c, Extra<1GeV/c;

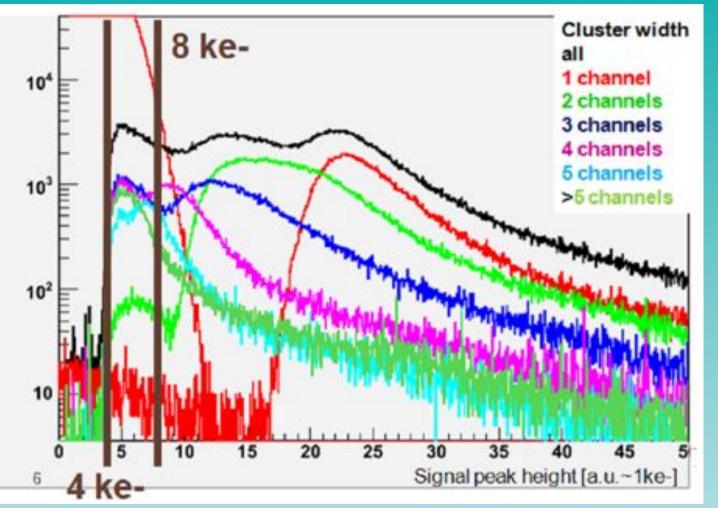
Pipe configuration: Be cone 2.3deg


Au+Au, 8 AGeV/c, 1000 events central:

ha ha o hoe ho, hoo o renta ventral,									
STS	normal strips							short strips	
configuration	15deg bstereo	10deg bstereo	8deg bstereo	6deg bstereo	4deg bstereo	2deg bstereo	15deg bstereo	8deg bstereo	
Mean	451+495	449+348	449+289	447+230	444+168	433+102	449+332	442+200	
hits+fakes	477+1420	474+976	473+804	472+629	470+451	463+262	467+1085	463+628	
in stations 1,4,8	381+542	379+375	378+312	377+249	376+184	373+117	378+569	376+330	
RefPrim Eff.	0,982	0,985	0,986	0,986	0,975	0,971	0,983	0,987	
RefSec Eff.	0,928	0,936	0,936	0,939	0,929	0,921	0,934	0,938	
ExtraSec Eff.	0,644	0,666	0,673	0,684	0,678	0,671	0,644	0,676	
Clone Prob.	0,019	0,018	0,019	0,02	0,075	0,034	0,019	0,019	
Ghost Prob.	0,035	0,031	0,031	0,029	0,044	0,042	0,034	0,03	
MC tr/ev found	332	334	334	334	329	322	330	330	
TF time s/ev	0,143	0,089	0,071	0,057	0,053	0,040	0,159	0,075	

Ref>1GeV/c, Extra<1GeV/c;

S. Belogurov, ITEP, Moscow school, Hirschegg, 15.02.11


Track finding in an ideal case

Under certain conditions TF loses its ability to cope with data.

S. Belogurov, ITEP, Moscow school, Hirschegg, 15.02.11

Influence of realistic readout

Hit lost due to threshold and individual channel dead time forces us to keep fakes well under control for enabling "missed hit" operation

S. Belogurov, ITEP, Moscow school, Hirschegg, 15.02.11

Closer look at Silicon Tracking System (STS) What does layout optimization imply

What should be weighed for selection of the strip length.

Shorter strips:

Pro

- Processing time and efficiency

- Ability to deal with missed hits inevitable with noises and dead time

Contra

- Price

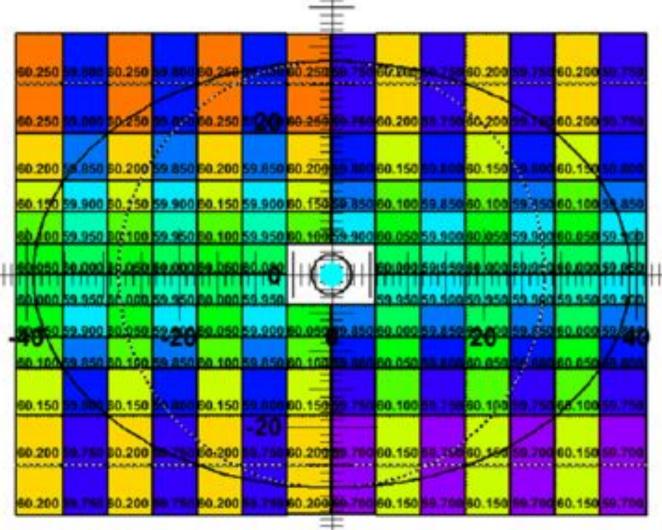
- Power consumption

- Material budget, especially at big angles (momentum resolution, deltas)

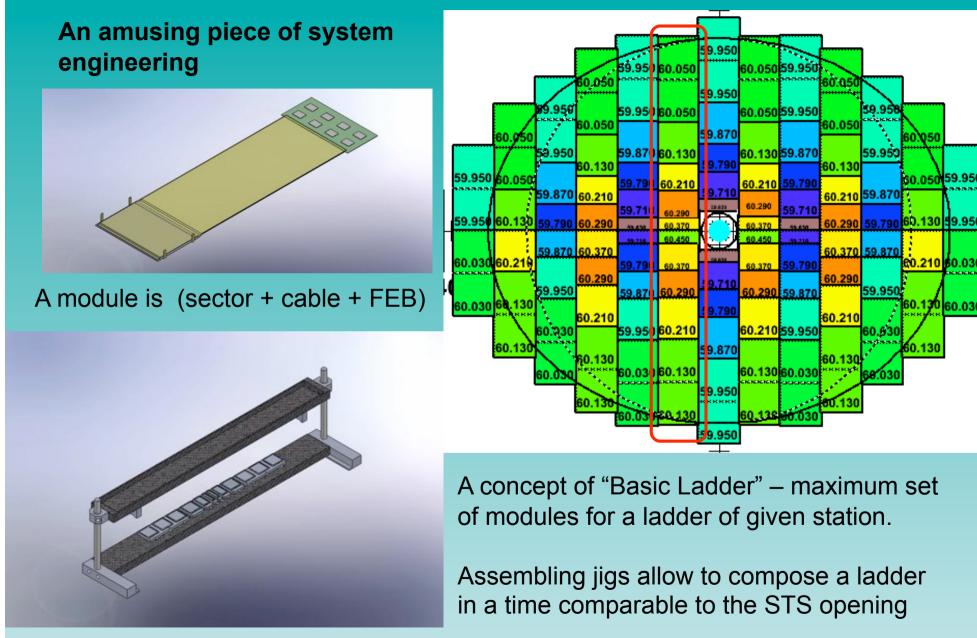
It is absolutely necessary to have prototype measurements of noises and pickups before finalizing the layout. Conditions at SIS100 and SIS300 are different, hence two different layouts are optimal.

S. Belogurov, ITEP, Moscow school, Hirschegg, 15.02.11

An amusing piece of system engineering

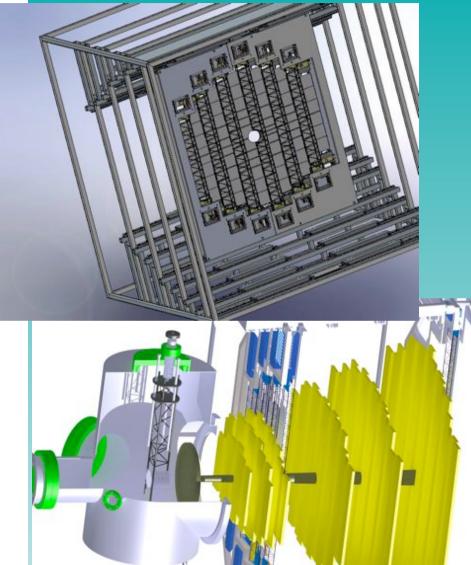

What is a spare module to keep in stock?

We should not have too many types of spare part.

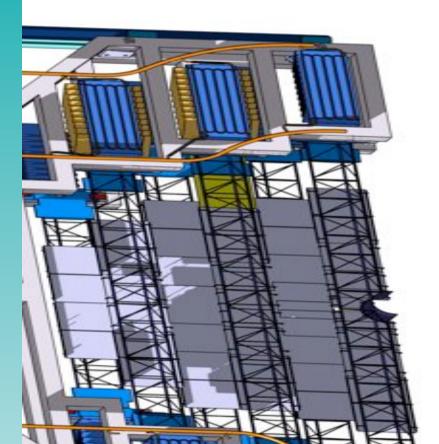

Spare module is a ladder.

This way of thinking leads to such stations: \rightarrow

But, Another thinking of a "module" leads to another result...



S. Belogurov, ITEP, Moscow school, Hirschegg, 15.02.11



S. Belogurov, ITEP, Moscow school, Hirschegg, 15.02.11

Conceptual model of STS

S. Belogurov, ITEP, Moscow school, Hirschegg, 15.02.11

Conceptual model of spring 2009 and more technical of Nov. 2010 – both only 4-th station detailed.

Conceptual model of STS

Er/Documents/UTEP123_Sep_2010-Jan_2011_ITEP/FAIR/STS/STS creator by Markin(1)

STSCreator

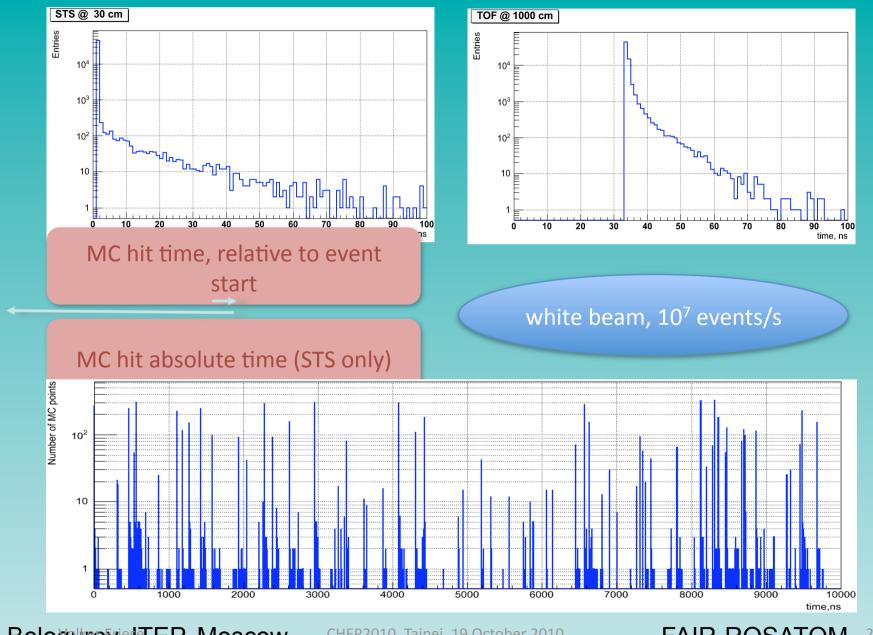
Save As:

A CATIA macro was written by A. Markin, (BMSTU) for creating the STS model from templates and design table containing detailed sizes of sensors, position and composition of basic ladders and stations

Template path: Browse... E/Documents/UTEP123_Sep_2010-Jan_2011_ITEP1FAIR/STS/STS creator by Markin/Teriplate1 Structure file paths E1Documents/JTEP123_Se

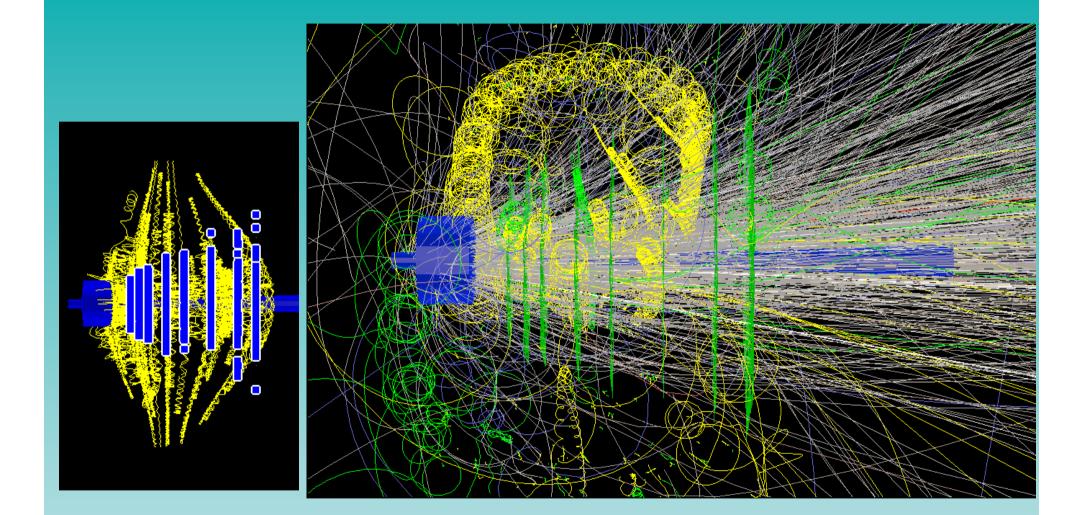
S. Belogurov, ITEP, Moscow school, Hirschegg, 15.02.11

Conclusions

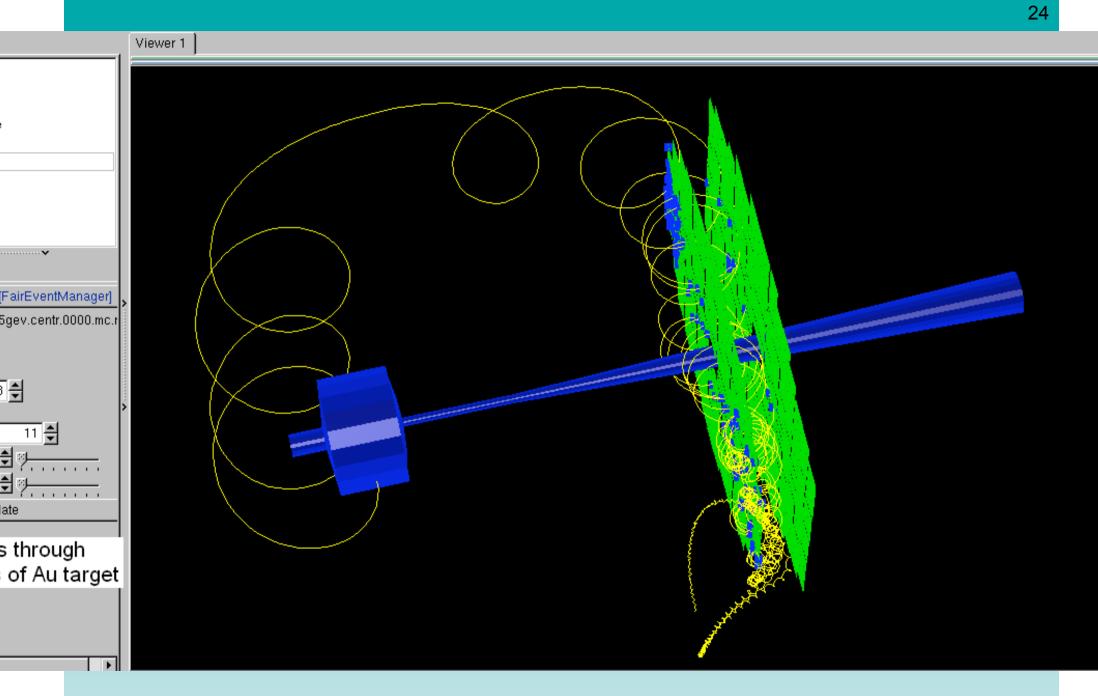

-CBM is planned at the edge, where design solutions are highly perceived by physical performance

-Well thought out staged upgrade strategy may help to get a good result with realistic funds

Data from presentations of CBM colleagues: A. Chernogorov, F. Guber, J. Heuser, S. Igolkin, A. Kotynia, P. Senger are used here.


S. Belogurov, ITEP, Moscow school, Hirschegg, 15.02.11

The Problem (V. Friese at CHEP10)



S. Belogurov, TEP, Moscow school, Hirschegg, 15.02.11

CHEP2010, Taipei, 19 October 2010

S. Belogurov, ITEP, Moscow school, Hirschegg, 15.02.11

S. Belogurov, ITEP, Moscow school, Hirschegg, 15.02.11