Physics of Compressed Baryonic Matter and the CBM Experiment

Claudia Höhne, University Gießen

Outline

Introduction & Motivation

- QCD phase diagram & experimental results
 - \rightarrow fundamental questions of QCD
 - Equation of state of strongly interacting matter?
 - Structure of strongly interacting matter as function of T and ρ_B ?
 - In medium properties of hadrons as function of T and ρ_{B} ?
 - \rightarrow address with heavy-ion collisions

2

- CBM experiment at FAIR
 - examples for
 - feasibility studies
 - detector R&D

Phasediagram

normal matter exists in different phases depending on p,T
phasediagram for hot and dense nuclear matter?

Phasediagram of strongly interacting matter

C. Höhne, Joint Helmholtz-Rosatom School for Young Scientists at FAIR, Hirschegg, Fet

Phasediagram of strongly interacting matter

Heavy ion collisions

simulation of a U+U collision at 23 GeV/A (UrQMD)

7

Phases of a heavy ion collision

UrQMD 160 GeV Au+Au

before collision

compression and heating

thermalization of the "fireball" (high T and ρ reached for ~10fm/c = 3.3 10⁻²³ s)

expansion

chemical freezeout (number and type of particles frozen) kinetic freezeout (particle momenta frozen)

Heavy ion collisions (II)

simulation of Au+Au collisions at different beam energies

- \rightarrow maximum baryon densities ρ increase with beam energy
- \rightarrow energy densities also increase with beam energy

Particle production

A+A collisions (II)

Particle production and statistical model

 number and type of produced particles can be nicely described with a statistical ansatz

 ρ_i = density of particle of type i

- assumption: all particles stem from a thermalized fireball at temperature T and baryon chemical potential μ_b
- depending on the volume (e.g. p+p, central Au+Au) a (micro)canonical or canonical partition function is used
- \bullet with three parameters: V, T, μ_{b} particle yields can be explained

very successful model!

$$\rho_i = \frac{g_i}{2\pi^2} \int \frac{p^2 dp}{\exp\left\{\frac{1}{T} \left(E_i - \mu_B B_i - \mu_S S_i\right)\right\} \pm 1}$$

C. Höhne, Joint Helmholtz-Rosatom Schoc

[Andronic et al. Nucl. Phys. A 772, 167 (2006). µ_b (MeV

What do we know from experiment?

- since 1980s heavy ion collision experiments at AGS, SPS
- 2000 start of RHIC, 2009 LHC
- ongoing experiments at SIS exploring "resonance matter"

Phasediagram of strongly interacting matter

The nature of the strong force

- interaction described by the exchange of gluons
- gluons carry color charge! \rightarrow selfinteraction

Property QED QCD Charge electric colour Bosons photon gluons (carries no charge) (carry charge) Mass of boson 0 0 Screening reduces bare amplifies bare charge charge $\alpha_{s}(q^{2}) \propto \ln(q^{2})^{-1}$ Strength α

QCD: Confinement

- small distances (large q²): V(r) ~ 1/r ← e.g. jets, spectroscopy of "charmonium" (cc̄)
 → perturbative calculations applicable ("pQCD")
- larger distances (small q²): V(r) ~ r ← e.g. J(M²), string model of hadrons
 → perturbative ansatz does not converge!: phenomenological methods, LQCD

$$V(r) = -\frac{4\alpha_s \hbar c}{3r} + Kr$$

• with increasing distance of the quark more and more energy is stored in the "string" until it becomes favorable to produce a new pair of quarks

Lattice - QCD

• because of the "running coupling constant" α_s which is small only at large q², i.e. small distances, perturbative treatment of QCD is only applicable at small distances ("pQCD")

- numerical method to treat larger distances "lattice QCD":
 - 4dim space-time lattice of size $N_{\sigma}^{3} x N_{\tau}$ with lattice spacing a
 - finally extrapolate to the continuum case: $a \rightarrow 0$ and $N_\tau \rightarrow \infty$
- \rightarrow calculations need large computer memory and speed!

Lattice-QCD (II)

 calculations limited to certain observables and regions of the QCD phase diagram

• in particular calculations for $\mu \neq 0$ are difficult and conceptual problems could only be solved a few years ago!

• $\mu_b = 0$

 \rightarrow transition to deconfinement above a certain $T_c!$

 $T_c \sim 175 \text{ MeV}$

driven by energy density

 $\epsilon_c \sim 1 \text{ GeV/fm}^3$

 quarks and gluons become relevant degrees of freedom

Lattice - QCD (III)

- phase transition at μ_b = 0 : crossover
 - = rapid change of properties but no clearly defined phase boundary
- μ_b > 0 not yet completely settled ... but:
- first order phase transition at large μ_{b}
- \rightarrow e.g. latent heat phase coexistence region
- critical point
 - $T_{crit} \thicksim 160 \; MeV \; \mu_{crit} \thicksim 360 \; MeV$
- low T, ~ ρ_0 : liquid gas phase transition nuclei \rightarrow hadron gas
- low T, high μ_{b} : color superconductor (quarks form Cooper pairs)
- chiral symmetry restoration at high T, large μ_{b}

Experiments – Signatures ?

How to characterize the produced hot & dense matter?

Signatures for phase transition?

- 90% of all measured particles are pions
- multiplicities increase smoothly

\rightarrow look for special probes, e.g:

- relative production of "new" quarks: strangeness, charm
- penetrating probes: di-leptons
- collective behaviour, e.g. flow, fluctuations
- energy loss of high momentum particles

total particle multiplicities in central Au+Au / Pb+Pb collisions

Limiting temperature at $\sqrt{s_{NN}} \sim 10 \text{ GeV}$

- statistical model fit: T, μ_B , V: **temperature saturates** for $\sqrt{s_{NN}} > 10$ GeV although energy density (and initial T) still increases
- \rightarrow deconfinement phase boundary reached, additional energy goes into heating the QGP
- occurs at the same energy at which mesons start to carry the larger part of the entropy

Structures in particle ratios

- statistical model: very succesful description of particle yields
- equilibrated hadron gas!
- multistrange hadrons are important – very sensitive!
 vicinity of phase boundary required?
- however: for low energies multistrange hadrons are missing!
- also freeze-out at phase boundary? or rescattering hadron gas?

Maximum in relative s-production

- maximum in relative strangeness production
- different energy dependence than in pp
- · details of dependence not captured by statistical hadron gas model
- data best described assuming a phase transition: prediction of SMES

Plateau in slopes of pt-distributions

- mixed phase: pressure and T independent of ε → weak increase of slopes of p_t-spectra
 [L. van Hove, Phys.Lett.B 118, 138 (1982)]
 [M. Gorenstein et al., Phys. Lett. B 567, 175 (2003)]
- behavior can only be explained assuming a phase transition
- similar behavior in <m_t> seen for 300 other particles: π , K, p, Λ , Ξ , ϕ 2008 however: low energy data [NA49: Phys.Rev.C77:024903, missing (MeV) 200 hydrodynamic calculation including a phase transition [M. Gazdzicki et al, Braz. J. HSD HSD + ISSPhys. 34, 322 (2004)] 100 bag model EoS with a strong Hvdro + PT1st order phase transition 10^{2} 10(UrQMD + hydro) . (GeV) [H. Petersen et al., arXiv:0902.4866]

Charmonium suppression

- charm newly produced: $m_c \sim 1.3~GeV \ ! \rightarrow$ new scale, production in initial hard scattering
- distribution among charmed hadrons depending on medium
- appealing early idea: charmonia will be dissolved in QGP
- \rightarrow suppressed yield compared to hadron gas

- J/ψ suppression measured
- difficult corrections, many open questions
- no good open-charm (Dmeson) measurement
- no data at lower energies

Search for the critical point: Event-by-event fluctuations

- phase transition of 2nd order at critical point: fluctuations?
- study of event-by-event fluctuations of
 - mean-pt
 - multiplicity
 - net electric charge
 - particle ratios
- experimentally difficult, many contributions can contribute
- no data for lower energies
- not conclusive

elliptic flow v2

• particle emission pattern in plane transverse to the reaction plane

- initial overlap eccentricity is transformed in momentum anisotropy
- driven by pressure from overlap region

$$\frac{dN}{d\phi} \sim \left[1 + 2v_1 \cdot \cos(\phi) + 2v_2 \cdot \cos(2\phi)\right]$$

C. Höhne, Joint Helmholtz-Rosatom School for Young Sc

 V_2

Quark number scaling of v2 at RHIC

• all flow observations scale extremely well if taking the underlying number of quarks into account!

- \rightarrow like (all!) quarks flow and combine to hadrons at a later stage (hadronisation)
- data can only be explained assuming a large, early built up pressure in a nearly ideal liquid (low viscosity!)
- breakdown of this feature at a certain energy??

Jet quenching

Phasediagram of strongly interacting matter

The equation of state

• thermodynamic relation between state variables; most prominent: ideal gas law \rightarrow relation between energy density ϵ and T, ρ etc.

 $P = \frac{F}{A} = \frac{F \cdot d}{A \cdot d} = \frac{E}{V}$

• thermodynamics for an ideal gas (liquid):

- the function $\epsilon(\rho,P,T)$, which satisfies this equation is called the Equation of State (EOS)
- different depending on the degrees of freedom of the investigated matter
 - nuclear matter
 - neutron matter (\rightarrow neutron stars)
 - quark matter

The nuclear equation of state (EOS)

• "equation of state" (EOS): energy/nucleon vs. density

$$\varepsilon(\rho,T) = \varepsilon_T(\rho,T) + \varepsilon_C(\rho,T=0) + \varepsilon_0 \qquad (\varepsilon = E/A)$$

thermal compressional ground state energy

• nuclear equation-of-state at T = 0: the "compressional" energy

$$E/A(\rho, T=0) = \frac{1}{\rho} \int U(\rho) d\rho$$

• $U(\rho)$ density dependent local potential • compression modulus κ

$$\kappa \ = \ \left(9\rho^2 \ \frac{\partial^2 E/A(\rho,T=0)}{\partial\rho^2}\right)_{\rho=\rho_0}$$

• constraints
$$\mathcal{E}(\rho = \rho_0, T = 0) = -16 MeV$$

 $\frac{\partial \varepsilon(\rho, T=0)}{\partial \rho}$

x=380 MeV

C. Höhne, Joint Helmholtz-Rosatom School for Young Scientists at FAIR, Hirschegg, Feb. 2011

stiff EoS

Analogy: Electrons in a lattice

- free electrons (no interaction with other e-, no potential)
- \rightarrow dispersion relation = parabola

$$E(\vec{k}) = \frac{(\hbar \vec{k})^2}{2m}$$

- electrons in a solid
- \rightarrow due to the lattice not all energies/ frequencies are possible
- \rightarrow introduction of the concept of an effective mass m_{eff} for electrons allows a simpler description / handling of the electrons in the lattice

$$m_{eff} = \hbar^2 \left(\frac{\partial^2 E}{\partial k^2}\right)^{-1}$$

 \rightarrow m_{eff} describes dispersion $E(\vec{k})$ of e⁻ in an external potential

Kaons in dense nuclear matter

• What happens if kaons are place inside nuclear matter (=external potential, density given by ρ or ρ/ρ_0)?

 \rightarrow dispersion relation for kaons!

 \rightarrow define m_{eff} in order to describe kaon energy in the nuclear medium

(yellow area: envelope of several microscopic calculations: all predict the same trend !)

Kaons in dense nuclear matter (III)

The compressibility of nuclear matter

.... and indeed: effect seen in K production in Au+Au and C+C collisions at at SIS

In medium kaons

K⁺ "squeeze out"

High net-baryon density matter in A+A collisions

- high baryon and energy densities created in central Au+Au collisions
- agreement between different models (not shown)

39

Production in elementary interactions

.... can this be understood qualitatively?

• elementary production process of kaons in NN collisions:

K⁻ mesons

р

 \mathbf{K}^+

K⁻

n

Kaons in dense nuclear matter (II)

• in a nuclear medium/ the vicinity of many more hadrons more processes become available, for example:

 \rightarrow "rescattering":

multistep processes for production

$$\begin{array}{rcl} NN & \to & N\Delta \\ & & N\Delta \to NK^+Y \\ & & \pi N \to K^+Y \\ & & (Y=\Lambda,\Sigma) \end{array}$$

Phasediagram of strongly interacting matter

Chiral symmetry restoration

Chiral symmetry

• Chiral symmetry = fundamental symmetry of QCD

• in case of mass less quarks, the chirality corresponds to the (conserved) helicity

• the QCD Lagrangian is chirally symmetric but in "nature" Chiral symmetry is broken !

- explicit breaking by small but finite quark masses
- spontaneously broken due to the existence of a mass less mode ("Goldstone-boson"): the pion.

C. Höhne, Joint Helmholtz-Rosatom School for Young Scientists at FAIR, Hirschegg, Feb. 2011 44

Chiral symmetry restoration (II)

- the groundstate of QCD is characterized by a non-vanishing field of quark – anti-quark pairs, the so-called chiral condensate.
- this is a non-perturbative effect of QCD
- already in ordinary nuclei the condensate is reduced as compared to vacuum
- prediction: chiral symmetry can be restored at high temperature or large baryon density

dd>

Analogy: classical mechanics

Analogy: Ferromagnet

Chiral symmetry restoration (III)

• chiral broken world:

 \rightarrow chiral partners show different spectral functions!

```
for example: nonstrange I=J=1 multiplet: \rho- and a_1 - meson
```

• chiral symmetry restoration requires that vector and axialvector spectral functions become degenerate

 \rightarrow dramatic reshaping of spectral functions expected!

ρ-meson in A+A collisions

• lifetime in vaccum 1.3 fm/c

 \rightarrow formation and decay inside the "fireball"

 $\rightarrow e^+e^-$ pair carries undistorted information of the fireball conditions to the outside: "penetrating probe"

 Δ^{++}

K

n

p

e⁺

e⁻

p-meson in dense nuclear matter

• ρ-meson in vacuum

- in (dense) nuclear matter the $\rho\text{-meson}$ might undergo a lot of rescattering
- \rightarrow broadens spectral function!

[Rapp, Wambach, Adv. Nucl. Phys. 25 (2000) 1, hep-ph/9909229]

Exploring nuclear matter with penetrating probes

- SPS: dilepton spectra measured by NA60 (μ + μ -) and CERES (e+e-)
- excess spectrum shows strong modification of $\rho\text{-meson}$ in medium

Exploring nuclear matter with penetrating probes

- measurement of di-electron channel: access to lowest masses
- \rightarrow strength of dilepton yield at low masses is due to coupling to baryons!
- importance of baryon density: data at 40 show higher excess than at 158 AGeV!

52

Summary: What do we know from experiment?

67 (2003) 024903

PRC

al.;

R. Averbeck et

Future experimental programs

Future explorations

C. Höhne, Joint Helmholtz-Rosatom School for Young Scientists at FAIR , Hirschegg, Feb. 2011 55

CBM: Physics topics and Observables

The equation-of-state at high ρ_{B}

- collective flow of hadrons
- particle production at threshold energies (open charm)

Deconfinement phase transition at high ρ_{B}

- excitation function and flow of strangeness (K, Λ , Σ , Ξ , Ω)
- excitation function and flow of charm (J/ ψ , ψ ', D⁰, D[±], Λ_c)
- charmonium suppression, sequential for J/ ψ and ψ' ?

QCD critical endpoint

• excitation function of event-by-event fluctuations (K/ π ,...)

Onset of chiral symmetry restoration at high ρ_{B}

• in-medium modifications of hadrons ($\rho,\omega,\phi \rightarrow e^+e^-(\mu^+\mu^-)$, D)

Systematics & precision!!

 \rightarrow characterization of the created medium!

Lecture Notes

Particle multiplicities

Particle multiplicity · branching ratio for min. bias Au+Au collisions at 25 GeV (from HSD and thermal model)

57

Highest net-baryon densities at FAIR

• high (net-)baryon and energy densities created in central Au+Au collisions

Exploring nuclear matter with penetrating probes

 dileptons are penetrating probes – direct radiation from the created hot and dense matter

C. Höhne, Joint Helmholtz-Rosatom School for Young Scientists at FAIR, Hirschegg, Feb. 2011

Charm production at threshold

CBM will measure charm production at threshold

 \rightarrow after primordial production, the survival, momentum and distribution amongst different hadrons of charm depends on the interactions with the dense and hot medium!

 \rightarrow direct probe of the medium!

Charm propagation

Propagation of produced charm quarks in the dense phase – quark like or (pre-)hadron like?

- charmonium to open charm ratio as indicator measure both!
- indications of collectivity?

A+A collisions (IV)

• the geometry of the colliding nuclei determines another important measure, the reaction plane

• relative to the reaction plane particle emission patterns (flow) can be measured, rich structure!

Fourier expansion of the $dN/d\phi$ distribution:

Sideflow versus elliptic flow

63

HADES and CBM startversion at SIS 100

CBM and HADES at SIS 100 and SIS 300

- systematic exploration of high baryon density matter in A+A collisions from 2 – 45 AGeV beam energy with 2nd generation experiments
- explore the QCD phase diagram, chiral symmetry restauration

The CBM experiment

• tracking, momentum determination, vertex reconstruction: radiation hard silicon pixel/strip detectors (STS) in a magnetic dipole field

STS tracking – heart of CBM

Challenge: high track density: ≈ 600 charged particles in $\pm 25^{\circ}$ @ 10MHz

Task

- track reconstruction: 0.1 GeV/c \leq 10-12 GeV/c $\Delta p/p \sim 1\%$ (p=1 GeV/c)
- primary and secondary vertex reconstruction (resolution \leq 50 μ m)
- V₀ track pattern recognition

 $c\tau = 312 \,\mu m$

fast & rad, hard detectors!

self triggered FEE

radiation hard and fast silicon pixel and strip detectors high speed DAQ and trigger online track reconstruction!

Open charm reconstruction

- open charm reconstruction via the reconstruction of their 2ndary decay vertex
- most important features for background rejection
 - good position resolution of 2ndary decay vertex
 - good position resolution for back extrapolation of decay particles to primary vertex plane
- thin high resolution detectors needed which are close to the primary vertex!

CBM – detector concept

Simulation of open charm reconstruction

- STS 8 double-sided Si micro-strip sensor stations (each 400 μm Si equ.)
- MVD 2 MAPS pixel sensors (300 $\mu m,$ 500 $\mu m)$ at z = 5 cm, 10 cm
- no K, π id.; p rejection via TOF; 2ndary vertex resolution ~ 50 μm
- semi-realistic detector response

Parallelization in CBM Reconstruction !

• fast event reconstruction is a **must** for CBM!

	Vector SIMD	MultiThreading	NVIDIA CUDA	OpenCL	
STS	+	+	+	+	
MuCh	+	+			
RICH	+	+			1
TRD	+	+		VIII	
Vertexing	+				
Open Charm Analysis	+				

DELL Server with:

- Core i7/Nehalem 2x(Xeon X5550 4x2.66 GHz, 8 MB L3 cache)
- DDR3-1333 36 GB main memory
- NVIDIA GTX 295 2x240 FPUs, 1792 MB
- optional LRB

Self-triggered readout electronics

- self-triggered readout electronics
- data-push architecture
- trigger evaluation with online tracking on large PC farm

Sensors for the MVD

Micro Vertex Detecor (MVD) Development

Development of the Silicon Tracking System (STS)

STS in thermal enclosure

Detector planes: ultra-light weight ladder structure

Sensor development:

double-sided micro-strips, stereo angle 15°, pitch 60 µm 300 µm thick, bonded to ultra-thin micro-cables, radiation hardness

Prototypes: full CBM sensor, ultrathin cables

RICH detector

- **aim:** clean electron identification for momenta below 8 GeV/c, robust and stable detector running at high rates!
- **concept:** RICH with gas radiator (CO_2), glass mirrors coated with AI+MgF₂, H8500 MAPMTs

Cherenkov threshold for pions in CO_2 p=4.65 GeV/c

RICH detector (II)

C. Höhne, Joint Helmholtz-Rosatom School for Young Scientists at FAIR , Hirschegg, Feb. 2011

RICH detector (III)

Mirrors

- glass mirrors: \leq 6 mm thickness, R \approx 3 m, AI+MgF₂ coating
- search for provider from industry with sufficient quality on surface homogenity and reflectivity

Reflectivity measurements

 FLABEG: very good reflectivity between 400 nm and 270 nm first drop around 250 nm: influence of aluminum oxide second drop at about 180 nm: interference at MgF₂ layer

Measurements done in cooperation with CERN, A. Braem and C. Joram

Reflectivity measurements

- FLABEG: very good reflectivity between 400 nm and 270 nm first drop around 250 nm: influence of aluminum oxide second drop at about 180 nm: interference at MgF₂ layer
- Compas: good reflectivity in the UV, full range to be measured

Measurements done in cooperation with CERN, A. Braem and C. Joram

Radius of curvature and surface homogenity

C. Höhne, Joint Helmholtz-Rosatom School for Young Scientists at FAIR , Hirschegg, Feb. 2011 82

RICH – TRD – TOF development

- RICH and TRD detectors for electron identification
- large size time-of-flight detector (RPCs) for hadron identification

MAPMT H8500

CBM feasibility studies

10³

10²

10

2

• feasibility studies performed for all major channels including event reconstruction and semirealistic detector setup

di-electrons

di-muons

Challenge of di-electron measurement

- clean electron identification (π suppression $\ge 10^4$)
- no e-ID in front of B-field and material budget of STS
- large background from physical sources (low-mass vector mesons!)
 - γ -conversions in target and STS, π^0 Dalitz decays
 - \rightarrow use reduced B-field (70%), use 1‰ interaction target
 - \rightarrow use excellent tracking and two hit resolution (≤ 100 μm) in first pixel detectors in order to reject this background

C. Höhne, Joint Helmholtz-Rosatom School for Young Scientists at FAIR , Hirschegg, Feb. 2011 85

Electron identification

- electron identification studies, N_{hit}/ring ~22 (H8500, UV extended window)
- background: central UrQMD events, 25 GeV Au+Au collisions
- 10⁴ π suppression with RICH + TRD for ~60% electron effciency

Low mass vector mesons

invariant mass spectra in central Au+Au collisions at

 25 AGeV (SIS 300): pt > 0.2 GeV/c background dominated by physical sources (80%), 1‰ int. target, 70% B-field

C. Höhne, Joint Helmholtz-Rosatom School for Young Scientists at FAIR, Hirschegg, Feb. 2011

[T. Galatyuk]

J/ψ and ψ'

- electrons: p < 13 GeV/c, pt > 1.2 GeV, 1‰ interaction target (25 μ m Au, need segmented target for sufficient event rate)
- S/B ratio ~2.4 for 250 μm Au target

[A. Maevskaya]

 trigger: TRD standalone trigger feasible? full STS + TRD tracking needed?

Summary

Experimental knowledge of the QCD phase diagram at high μ_{B} :

- evidence for onset of deconfinement
- medium properties? medium influences seen: more data, statistics missing → characterization of medium needed!
- evidence for critical point? not conclusive

CBM@FAIR – high μ_B , moderate T:

- exploration of QCD phase diagram at high baryon densities at SIS 100 and SIS 300 (2-45 AGeV beam energy)
- together with HADES unique possibility of characterizing properties of baryon dense matter

CBM collaboration

China:

Tsinghua Univ., Beijing CCNU Wuhan USTC Hefei

Croatia:

University of Split RBI, Zagreb

Cyprus:

Nikosia Univ.

Czech Republic:

CAS, Rez Techn. Univ. Prague <u>France:</u> IPHC Strasbourg

Germany:

Univ. Gießen Univ. Heidelberg, Phys. Inst. Univ. HD, Kirchhoff Inst. Univ. Frankfurt Univ. Mannheim Univ. Münster FZ Rossendorf GSI Darmstadt Univ. Tübingen * Univ. Wuppertal <u>Hungaria:</u> KFKI Budapest Eötvös Univ. Budapest

India:

Aligarh Muslim Univ., Aligarh IOP Bhubaneswar Panjab Univ., Chandigarh Gauhati Univ., Guwahati Univ. Rajasthan, Jaipur Univ. Jammu, Jammu IIT Kharagpur SAHA Kolkata Univ Calcutta, Kolkata VECC Kolkata Univ. Kashmir, Srinagar Banaras Hindu Univ., Varanasi

<u>Korea:</u>

Korea Univ. Seoul Pusan National Univ.

Norway:

Univ. Bergen

Poland:

Krakow Univ. Warsaw Univ. Silesia Univ. Katowice Nucl. Phys. Inst. Krakow

Portugal:

LIP Coimbra

Romania:

NIPNE Bucharest Bucharest University

Russia:

IHEP Protvino INR Troitzk ITEP Moscow KRI, St. Petersburg Kurchatov Inst. Moscow LHE, JINR Dubna LPP, JINR Dubna LIT, JINR Dubna MEPHI Moscow Obninsk State Univ. PNPI Gatchina SINP, Moscow State Univ. St. Petersburg Polytec. U. Ukraine:

INR, Kiev Shevchenko Univ. , Kiev

