Crossing bounds: From exotic nuclear systems to FAIR

H. Simon GSI Darmstadt

Joint Helmholtz-Rosatom School for Young Scientists at FAIR

Hirschegg/Austria 201102 12-17

My main projects

Electronics for NUSTAR/FAIR

Online PsA @ 100MHz

Menu

1. NUSTAR: Nuclear Structure Astrophysics \& Reactions
2. Halo Nuclei: Low density nuclear matter
3. Extremely neutron rich systems
4. EOS studies via nuclear excitations
5. The future is FAIR
6. Summary

Stellar environments

What do we know? And how

- Primary input to Astrophysics is the observations of (very) distant objects through astronomers
\rightarrow indirect measurements
- At the first glance for we just look at rather hot surfaces of stars ...

Thermodynamics defines the boundaries

... and that's what we want to know.

Start:
 Basic properties:

- Temperature
- Size

Observables:

- Apparent Magnitude
- Spectrum

Magnitude/Distance analysis (Inverse Square Law)

Apparent magnitude and absolute magnitude (or luminosity) can only be related if distance is known!

Example: solar luminosity

$$
\mathrm{L}_{\text {sol }}=3.846 \times 10^{26} \mathrm{~W}
$$

@ 1 AU flux is $F=1365 \mathrm{~W} \mathrm{~m}^{-2}$

$$
F=L /\left(4 \pi r^{2}\right)
$$

@ 10pc it is $F=3.208 \times 10^{-10} \mathrm{~W} \mathrm{~m}^{-2}$
\rightarrow comparison is done at 10 pc (absolute magnitude)

Magnitude/Distance analysis

E.g. direct method:

Parallax measurement 1 pc $=3.086 \ldots 10^{16} \mathrm{~m}$ $=3.262 \ldots$. ly

High Precision Parallax Collecting Satellite 1989-1993
0.001 " reolution $\rightarrow \quad 1 \%$ (30ly) 400 stars,

10\% (300ly) 28000 stars
(Milky Way diameter: 100‘000 ly)
\rightarrow indirect methods: red-shift, cepheids, SN

Spectral analysis (blackbody radiation)

Wiens law
$\lambda_{\max }{ }^{\top}=0.0029 \mathrm{~m} \mathrm{~K}$ 3000 K - 970 nm (IR) 10000K - 290 nm (UV)

and (wave length dependênd) classification (+ absorption lines)

Riegel (~ 10000 K)

Spectral analysis (blackbody radiation)

and conditions how the light was emitted ...

Stefan-Boltzmann eq.

 ($\sigma=5.67 \ldots 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}$)$\mathrm{L}=4 \pi \mathrm{R}^{2} \sigma \mathrm{~T}^{4}$
e.g. Sun T: 5777K

R: 0.6955 Mio km
\rightarrow L: $3.839 \times 10^{26} \mathrm{~W}$
\rightarrow Model input
$\mathrm{T}, \mathrm{L}, \mathrm{R}$ from $\mathrm{M}, \mathrm{m}, \mathrm{r}$ \& absorption

Lifetime measurements with radioisotopes

${ }^{147} \mathrm{Sm} \stackrel{\alpha}{ }{ }^{143} \mathrm{Nd}, \mathrm{T}_{1 / 2}: 1.06 \times 10^{11} \mathrm{y}$ ${ }^{144} \mathrm{Nd} \alpha$ decay, $\mathrm{T}_{1 / 2}: 2.29 \times 10^{15} \mathrm{y}$

\rightarrow Moon surface is $\sim 5 \times 10^{9} \mathrm{y}$ old

... so the sun should be as old (at least) !

Consequences:

And how are heavier elements ($\mathrm{A} \geq 56$) produced?
EN-AM-ZOO.DE

2.24 g Au

Stars use nuclear energy (fusion)
\rightarrow seed production up ~ A=56
\rightarrow ‘slow' process

solar abundances

mass number A

... predominantly via slow and rapid neutron capture

Why (and where) are radioactive beams involved?

Examples:

1. pp (III) in the sun
2. r-process
3. n-star EOS

Tomography of the sun via neutrinos!

... and radioactive isotopes in the sun

$$
\begin{aligned}
& \text { simple idea } 4 \mathrm{p} \rightarrow{ }^{4} \mathrm{He}+2 \mathrm{e}^{+}+2 v \\
& \Delta \mathrm{mc}^{2}=26.73 \mathrm{MeV} \\
& \mathrm{Q}_{\text {eff }}=\Delta \mathrm{mc}^{2}-\mathrm{E}_{\mathrm{v}} \quad \text { however: }
\end{aligned}
$$

${ }^{7} \mathrm{Be}+\mathrm{p} \rightarrow{ }^{8} \mathrm{~B}+\gamma$ in the laboratory (direct measurement)
${ }^{7} \mathrm{Be}$ is unstable ($\mathrm{T}_{1 / 2}=53 \mathrm{~d}$)

Temperature in the sun: ~ 15 Mio K

av. kin. energy $3 / 2 \mathrm{kT}=8,6 \cdot 10^{-5} \mathrm{eV} / \mathrm{K}$ * $1.5 \cdot 10^{7} \mathrm{~K}=1290 \mathrm{eV}$
\rightarrow high energy tail of Boltzmann distribution
$\propto e^{-E / k T}$
Coulomb repulsion
\rightarrow tunneling through barrier $\propto e^{-b / V E}$
\rightarrow low energy x-sec (de Broglie wave length) $\propto \pi(h / p)^{2}$ i.e. 1/E
\rightarrow Maximum ${ }^{7} \mathrm{Be}(\mathrm{p}, \gamma) @ 18 \mathrm{keV}$, very low energy on MeV scale!

LUNA (2009): ${ }^{3} \mathrm{He}(\mathbf{\alpha}, \mathrm{y})^{7} \mathrm{Be}$ 0.02 pb (2 events $/ \mathrm{m}$) @ 16keV searching for a resonance around 22 keV (Gamov peak).

Max.: $(\mathrm{bkT} / 2)^{2 / 3}=1.22\left(\mathrm{Z}_{1}{ }^{2} \mathrm{Z}_{2}{ }^{2} \mu \mathrm{~T}_{6}{ }^{2}\right)^{1 / 3} \mathrm{keV}$

Possible way out ...

Coulomb dissociation (CD)
Study inverse process (detailed balance)
${ }^{8} \mathrm{~B}$ is unstable ($\mathrm{T}_{1 / 2}=0.77 \mathrm{~s}$)
$\rightarrow^{8} \mathrm{~B}(\gamma, \mathrm{p})$ measure cross section σ_{CD} and relative energy ${ }^{7} \mathrm{Be}$ and p (starts at 0 threshold)

$$
\left.\begin{array}{rl}
\frac{\mathrm{d} \sigma_{\mathrm{CD}}}{\mathrm{dE}_{\gamma}} & =\frac{1}{\mathrm{E}_{\gamma}} \frac{\text { virtual photon theory }}{\mathrm{dE}_{\gamma}} \sigma_{(\gamma, p)} \\
\downarrow & \text { detailed balance }
\end{array}\right\} \begin{gathered}
\sigma_{(\gamma, p)}=\frac{\left(2 \mathrm{~J}_{7 \mathrm{Be}}+1\right)\left(2 \mathrm{~J}_{\mathrm{p}}+1\right)}{2\left(2 \mathrm{~J}_{8 \mathrm{~B}}+1\right)} \frac{\mathrm{k}_{\mathrm{cm}}^{2}}{\mathrm{k}_{\gamma}^{2}} \sigma_{(p, \gamma)}
\end{gathered}
$$

Both methods work ... and deliver comparable results !

$$
\sigma(\mathrm{E})=\mathrm{S}(\mathrm{E}) / \mathrm{E} \mathrm{e}^{-\mathrm{b} / \mathrm{V}}
$$

$\rightarrow S(E)$ describes nuclear structure

Extrapolation from 100keV to relevant low energy still necessary
 resolution (CD)
 vs.
 rate (direct)

To be explained ...

Radioactive Beam Studies:

Specific (\boldsymbol{x}, γ) reactions
${ }^{4} \mathrm{He}(2 \mathrm{n}, \gamma)^{6} \mathrm{He},{ }^{7} \mathrm{Be}(\mathrm{p}, \gamma)^{8} \mathrm{~B},{ }^{14} \mathrm{C}(\mathrm{n}, \gamma)^{15} \mathrm{C},{ }^{26} \mathrm{~S}(\mathrm{p}, \gamma)^{27} \mathrm{P},{ }^{15} \mathrm{O}(2 \mathrm{p}, \gamma)^{17} \mathrm{Ne}$, ${ }^{31,32} \mathrm{Cl}(\mathrm{p}, \gamma)^{32,33} \mathrm{Ar}, \ldots$

Structure input for extrapolation of nuclear data

Neutron matter very exotic systems, ${ }^{x_{n}}, 5,7 \mathrm{H},{ }^{9,10} \mathrm{He},{ }^{12,13} \mathrm{Li}, \ldots$
precise study asymmetry EOS via excitations

At the Outskirts: Three bodies find together

Physics with radioactive beams

What's exotic in Exotic Nuclei

stable

binding energies (B) of valence nucleons small proton and neutron density distributions differ

Exotica: Haloes

${ }^{208} \mathrm{~Pb}$

${ }^{11} \mathrm{Li}$

The nuclear Halo

Threshold phenomenon resulting from a bound state close to the continuum

Low separation energy + short range of nuclear force allow tunnelling into the space surrounding the core
e.g. ${ }^{11} \mathrm{Be}$

Spatially separated clusters

$$
\begin{aligned}
& \psi(r) \rightarrow \frac{e^{-\kappa r}}{r} \\
& \kappa=\frac{\sqrt{2 m S_{n}}}{\hbar}
\end{aligned}
$$

Cross section reflects size (Tanihata 1985)

$$
\sigma_{I}(p, t)=\pi\left[R_{I}(p)+R_{I}(t)\right]^{2}
$$

Be, C and Al

$R\left({ }^{11} \mathrm{Li}\right)=\mathbf{3 . 1 0 (1 4)} \mathrm{fm}$
I. Tanihata et al., PRL 55 (1985) 2676

Transmission Experiment

Observation of a Large Reaction Cross Section in the Drip-Line Nucleus ${ }^{\mathbf{2 2}} \mathbf{C}$

K. Tanaka, ${ }^{1}$ T. Yamaguchi, ${ }^{2}$ T. Suzuki, ${ }^{2}$ T. Ohtsubo, ${ }^{3}$ M. Fukuda, ${ }^{4}$ D. Nishimura, ${ }^{4}$ M. Takechi, ${ }^{4,1}$ K. Ogata, ${ }^{5}$ A. Ozawa, ${ }^{6}$ T. Izumikawa, ${ }^{7}$ T. Aiba, ${ }^{3}$ N. Aoi, ${ }^{1}$ H. Baba, ${ }^{1}$ Y. Hashizume, ${ }^{6}$ K. Inafuku, ${ }^{8}$ N. Iwasa, ${ }^{8}$ K. Kobayashi, ${ }^{2}$ M. Komuro, ${ }^{2}$ Y. Kondo, ${ }^{9}$ T. Kubo, ${ }^{1}$ M. Kurokawa, ${ }^{1}$ T. Matsuyama, ${ }^{3}$ S. Michimasa, ${ }^{1, *}$ T. Motobayashi, ${ }^{1}$ T. Nakabayashi, ${ }^{9}$ S. Nakajima, ${ }^{2}$ T. Nakamura, ${ }^{9}$ H. Sakurai, ${ }^{1}$ R. Shinoda, ${ }^{2}$ M. Shinohara, ${ }^{9}$ H. Suzuki, ${ }^{10,6}$ E. Takeshita, ${ }^{1, \dagger}$ S. Takeuchi, ${ }^{1}$ Y. Togano, ${ }^{11}$ K. Yamada, ${ }^{1}$ T. Yasuno, ${ }^{6}$ and M. Yoshitake ${ }^{2}$

Shell reordering: Halo formation

Mean-field modifications

surface composed of diffuse

 neutron matterderivative of mean field potential weaker and spin-orbit interaction reduced

Nucleon-nucleon interaction

$\sigma \sigma \tau \tau$ interaction :

coupling of p-n spin-orbit partners in partly occupied orbits
O: missing $\pi \mathrm{d}_{5 / 2}$ do not bind $\mathrm{vd}_{3 / 2} \rightarrow \mathrm{~N}=16$ T.Otsuka et al.,PRL87 (2001) 082502 (tensor) PRL95 (2005) 232502

Repulsive 3N force

T.Otsuka et al., PRL105 (2010) 032501

Bridging the $A=5,8$ gaps for heavy element creation

- Bypass reactions to triple-a process stellar burning
- ${ }^{8} \mathrm{Be}(n, y)^{9} \mathrm{Be}(a, n)^{12} \mathrm{C} \quad$ e.g. core collapse supernovae
- ${ }^{4} \mathrm{He}(2 n, \gamma)^{6} \mathrm{He}(\alpha, n)^{9} \mathrm{Be}$

Continuum spectroscopy

$\left({ }^{4} \mathrm{He}(2 \mathrm{n}, \mathrm{y})^{6} \mathrm{He}\right.$ backwards)

Coulomb dissociation:
$E_{x} \leq 10 \mathrm{MeV} \quad 100 \%$ cluster sumrule
$\Sigma B(E 1)=1.2(0.2) \mathrm{e}^{2 \mathrm{fm}^{2}}$

$$
<\mathrm{r}^{2}{ }_{\alpha-n \mathrm{nn}}>^{1 / 2}=3.4(4) \mathrm{fm}
$$

$$
\left\langle r_{c}^{2}\right\rangle^{1 / 2} \text { exp. }=2.016(72) \mathrm{fm}
$$

$$
\left\langle r_{c}^{2}\right\rangle^{1 / 2} \text { exp. }=2.068(11) \mathrm{fm} \text { (laser spectroscopy) }
$$

$$
\text { P. Mueller et al. PRL99 (2007) } 252501
$$

$$
\left\langle r_{c}^{2}\right\rangle^{1 / 2} \text { theo. }=2.059 \mathrm{fm}
$$

B.V. Danilin et al., NPA632 (1998) 383

Elastic proton scattering - inverse kinematics

ALADIN-LAND Setup
 (kinematically complete)

- particle identification
- time of flight

Experimental Setup
 (less schematic)

Exotic structure across the dripline:

P.G. Hansen, Nature 328 (1987) 476

\rightarrow most exotic systems

\rightarrow nearly unbiased \& clean production !

Exploring Unbound Lithium isotopes

$\mathrm{a}_{\mathrm{s}}(\mathrm{fm})$	$\mathrm{S}_{\mathrm{n}}(\mathrm{MeV})$
$-13.7(1.6)$	$1.47(0.19)$

Close to
$\mathrm{S}_{2 \mathrm{n}}{ }^{14} \mathrm{Be}$

$435(25)$

${ }^{11} \mathrm{Li}+n$
C. Hall et al., PRC81 (2010) 021302

Exploring Unbound Lithium isotopes

$$
{ }^{13} \mathrm{Li}:{ }^{14} \mathrm{Be}+\mathrm{p} \rightarrow{ }^{11} \mathrm{Li}+\mathrm{n}+\mathrm{n}
$$

$\mathrm{d} \sigma / \mathrm{d} \mathrm{E}_{\text {nofs }} \propto \mathrm{E}^{2} /\left(2.21 \mathrm{~S}_{2 \mathrm{n}}+\mathrm{E}\right)^{7 / 2} \quad \mathrm{~K}_{0}=0$

$\rightarrow{ }^{11} \mathrm{Li}+2 \mathrm{n}$ resonance picture
Evidence for existence at $1.47(31) \mathrm{MeV}$.
\rightarrow Angular correlations ...
Y. Aksyutina, H. Johansson et al., PLB666 (2008) 430
H.T. Johansson, Y. Aksyutina, Nucl. Phys. A847 (2010) 66

Intensities for detailed studies

Results and current limits ...

- Comprehensive study of exotic unbound systems with extreme A/Z
- Structure information unveiled
unveiled

25 F	26 F	27 F
${ }^{24} \mathrm{O}$	${ }^{25} \mathrm{O}$	26 O

- e.g.
Unbound oxygen isotopes
e.g.
Unbound oxygen isotopes

			${ }^{10} \mathrm{Li}$	${ }^{11} \mathrm{Li}$	${ }^{12} \mathrm{Li}$	${ }^{13} \mathrm{Li}$
${ }^{6} \mathrm{He}$	${ }^{7} \mathrm{He}$	${ }^{8} \mathrm{He}$	${ }^{9} \mathrm{He}$	${ }^{10} \mathrm{He}$		t time
${ }_{5}^{5} \mathrm{H}$						

Results and current limits ...

- Comprehensive study of exotic unbound systems with extreme A/Z
- Structure information unveiled

- e.g.

Unbound oxygen isotopes

${ }^{25} \mathrm{~F}$	${ }^{26} \mathrm{~F}$	${ }^{27} \mathrm{~F}$
${ }^{24} \mathrm{O}$	${ }^{25} \mathrm{O}$	${ }^{26} \mathrm{O}$

What next ? Target recoil detection!

L.V. Chulkov et al., Nucl. Phys. A759(2005)43

70
80

$$
\theta_{\alpha, p^{\prime}}\left({ }^{\circ}\right)
$$

liquid hydrogen or CH_{2} target \& recoil proton detection
T. Neff et al., Nucl. Phys. A752(2005)321c

Direct observation of kinematical correlations \rightarrow
(i) (Cluster) spectroscopic factors (p,2p),(p,pn),(p,px) inv. kinematics
(ii) clean production of ${ }^{4} \mathrm{H},{ }^{7} \mathrm{H}, \ldots$ via $\boldsymbol{\alpha}$ knockout !

Quasi-free scattering in inverse kinematics

redundant experimental information:
kinematical reconstruction from proton momenta
plus gamma rays, recoil momentum, invariant mass sensitivity not limited to surface
\rightarrow spectral functions
\rightarrow knockout from deeply bound states
cluster knockout reactions

New Experiments (Aug/Sep 2010) R3B/FAIR precursor: Setup at Cave C

Experimental Setup (less schematic)

QFS with Exotic Nuclei: ${ }^{17} \mathrm{Ne}(\mathrm{p}, 2 \mathrm{p})^{15} \mathrm{O}+\mathrm{p}$ The two-proton Halo (?) nucleus ${ }^{17} \mathrm{Ne}$

Internal Momentum
Separation Energy
$q=-p_{A-1}=p_{1}+p_{2}-p_{0}$

Pilot experiments with ${ }^{12} \mathrm{C},{ }^{17} \mathrm{Ne}$ and Ni isotopes already performed at the LAND-R3B setup are under analysis ...

Angular Correlations measured with Si-strip detectors for ${ }^{17} \mathrm{Ne}(p, 2 p){ }^{15} \mathrm{O}+\mathrm{p}$
$\Delta \theta \sim 180^{\circ}, \Delta \phi \sim 83^{\circ}$ (sim. as for free pp scattering)

2/90

The origin of elements

La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

Big bang nucleosythesis Hydrogen Burning CNO Helium Burning Carbon burning Neon burning

Silicon burningEquilibrium reactions/Photodesintegration Spallation in the ISM
\square s-process/p-process in AGB stars
Oxygen burning

Eta Carinae

Nucleosynthesis ($\mathrm{A} \geq 56$)

Nucleosynthesis in the r-process (rapid neutron capture)

Nucleosynthesis in the r-process

JINA

Joint Institute for Nuclear Astrophysics 2002
Movie :H. Schatz, National Superconducting Cyclotron Laboratory
Calculation : K. Vaughan, J.L. Galache,
and A. Aprahamian, University of Notre Dame
Model : B. Meyer, Clemson University and R. Surman, North Carolina State

The dipole response of n-rich nuclei and the r-process

Studies of neutron-rich nuclei in the laboratory (survey)

Pygmy Resonances enhance (γ, n) via direct capture ?!

Can we learn something on neutron matter?

The nuclear equation of state: dependence on n-p asymmetry and density

- symmetry energy and its density dependence close to saturation density
\rightarrow properties of n-rich nuclei?
Dipole vibrations, neutron-skin thickness
- symmetry energy at higher densities \rightarrow reactions with n-rich nuclei (n-p flow)

Dipole-strength distributions in neutron-rich Sn isotopes

P. Ring et al.

- located at 10 MeV
- exhausts a few \% TRK sum rule
- in agreement with theory

GDR

- no deviation from systematics

Pygmy dipole strength, Neutron Skin, and the Equation of State of neutron-rich Matter

Relation between dipole strength and n-skin thickness

"...,the pygmy dipole resonance may place important constraints on the neutron skin of heavy nuclei and, as a result, on the equation of state of neutron-rich matter."
J. Piekarewicz, PRC 73 (2006) 044325
n-skin thickness derived from dipole strength

Constraints on EoS of neutron-rich matter derived from dipole strength of n-rich Sn isotopes
symmetry energy $\mathrm{a}_{4}=32.0 \pm 1.8 \mathrm{MeV}$
pressure $\mathrm{p}_{\mathrm{o}}=2.3 \pm 0.8 \mathrm{MeV} / \mathrm{fm}^{3}$

Additional Information from γ spectroscopy

A. Klimkiewicz et al.,

Phys. Rev. C 76 (2007) 051603(R)

Intermittend Summary: Why do we study nuclear physics ...

- Towards a Consistent Understanding of the Atomic Nucleus

-What are the limits for existence of nuclei?
-Where are the proton and neutron drip lines situated?
-Where does the nuclear chart end?
-How does the nuclear force depend on varying proton-toneutron ratios?
-What is the isospin dependence of the spin-orbit force?
-How does shell structure change far away from stability?
-How to explain collective phenomena from individual motion?
-What are the phases, relevant degrees of freedom, and symmetries of the nuclear many-body system?
-How are complex nuclei built from their basic constituents?
-What is the effective nucleon-nucleon interaction?
-How does QCD constrain its parameters?
-Which are the nuclei relevant for astrophysical processes and what are their properties?
-What is the origin of the heavy elements?

Preparing for FAIR

Intensity increase 3-4 orders of magnitude !

Production of radioactive beams: Methods

H. Geissel, G. Münzenberg, K. Riisager, Annu. Rev. Nucl. Part. Sci. 45 (1995) 163

ISOL

ISOL:

- spallation (~1 GeV protons)
- fission: p-induced, fast neutrons (d beam), slow neutrons (reactor), photons (e- beam)
- fusion/evaporation, multi-nucleon transfer

IN-FLIGHT:

relativistic heavy ions ($50 \mathrm{MeV} / \mathrm{u}-1 \mathrm{GeV} / \mathrm{u}$)

- fragmentation
- fission (elm. or nuclear induced)

RIBs produced by fragmentation or fission

Projectile Fragmentation

Sn isotopes

(time of flight through FRS ~300ns)

Layout and Design parameters for the Super-FRS

Projectile:

- Elements p - U
- Energy up to $1.5 \mathrm{GeV} / \mathrm{u}$
- Intensity up to $10^{12} / \mathrm{s}$
(depending on element)
- DC or pulsed operation

Design Parameters:
$\varepsilon_{x}=\varepsilon_{y}=40 \pi \mathrm{~mm} \mathrm{mrad}$
$\Phi_{\mathrm{x}}= \pm 40 \mathrm{mrad}$
$\Phi_{\mathrm{y}}= \pm 20 \mathrm{mrad}$
$\Delta \mathrm{P} / \mathrm{P}= \pm 2.5 \%$
$\mathrm{B} \rho=2-20 \mathrm{Tm}$
$\mathrm{R}_{\text {ion }}=750 / 1500$
(first / second stage)
Spot size on target
$\sigma_{\mathrm{x}}=1.0 \mathrm{~mm}$
$\sigma_{\mathrm{y}}=2.0 \mathrm{~mm}$

Goal: Larger Acceptance

Features:

- 2 Separator-stages in achromatic mode
- Separation by $\operatorname{B} \rho-\Delta \mathrm{E}-\mathrm{B} \rho$ method (variable degrader)
- Multi-branch system
- Large acceptance utilizing sc magnets
- Handling concept for high- radiation area

Comparison of FRS with Super-FRS, intensity gain

Super-FRS

Degrader 2

150 m

	$\mathrm{B} \rho_{\max }$	$\Delta \mathrm{p} / \mathrm{p}$	$\Delta \Phi_{\mathrm{x}}, \Delta \Phi_{\mathrm{y}}$	resolving power	gain factor	
${ }^{19} \mathrm{C}$	${ }^{132} \mathrm{Sn}$					
FRS	18 Tm	1.0%	$\pm 13, \pm 13 \mathrm{mrad}$	1500	1	1
Super-FRS	20 Tm	2.5%	$\pm 40, \pm 20 \mathrm{mrad}$	1500	5	10
		including primary rate	250	20000		

Separation Performance of the Super-FRS

1.1 $\mathrm{A} \mathrm{GeV}^{238} \mathrm{U}$ on $4 \mathrm{~g} / \mathrm{cm}^{2} \mathrm{C}$ target, two Al degraders $\mathrm{d} / \mathrm{R}=0.3, \mathrm{~d} / \mathrm{R}=0.7$

Features of two degrader stages

- Introduction of another separation cut in the A-Z plane
- Reduction of contaminants from fragments produced in the degrader
- Optimization of the fragment rate on detectors in the Main-Separator
- Possible usage of Pre- and Main-Separator for secondary reaction studies

Production of radioactive beams by fragmentation and fission

Detector Instrumentation of the SuperFRS

$\mathrm{B} \rho-\Delta \mathrm{E}-\mathrm{TOF}$ method: Requirements

NO CHARGE STATES!

$$
\begin{aligned}
\mathrm{B} \rho=\mathrm{A} / \mathrm{Z} \cdot \beta \cdot \gamma & \Rightarrow \mathrm{~A} / \mathrm{Z}, \mathrm{P} \\
\mathrm{TOF}=\mathrm{L} / \beta & \leadsto \\
\Delta \mathrm{E} \sim \mathrm{Z}^{2} / \beta^{2} & \Rightarrow \mathrm{Z}
\end{aligned}
$$

- Position: Wirechambers (single event readout)/Diamond
- $\Delta \mathrm{E}$:
- TOF:

Plastic/Diamond

Fast sampling \& timing techniques

> Challenge:
$>$ Beam identification at rates up to 1 MHz .
$>$ ToF over km distance with sub-ns resolution.
$>\Delta \mathrm{E}$ resolution 2-3\%
> Solution:
$>$ Fast sampling and FPGA based digital signal processing \& pulse shape analysis.
$>$ Campus wide Time Distribution System based on FAIR BuTiS timing system.
$>$ TAC or DLL based Frontends.
> First studies using Tacquila@R³B/Cave-C.
$>$ Digital Signal Processing (for PSP, MUSIC) in collaboration with KVI Groningen/JSI Lubljana

FRS \& RISING

production

Coulomb excitation of a primary beam $-{ }^{84} \mathrm{Kr}$

${ }^{84} \mathrm{Kr}(113 \mathrm{AMeV})+\mathrm{Au}\left(0.4 \mathrm{~g} / \mathrm{cm}^{2}\right)$

- Particle identification before and after the target
- Forward scattering angle selection
- Fixed $\beta=0.4$ value
- Event by event Doppler correction

New Shell Structure: Cr isotopes

- B(E2) values for ${ }^{56,58} \mathrm{Cr}$ (lifetime/x-sec/energy)

$$
B\left(\mathrm{E} 2,{ }^{A} \mathrm{Cr}\right)=\frac{I_{\gamma}\left({ }^{A} \mathrm{Cr}\right) / N_{\mathrm{pro}}\left({ }^{A} \mathrm{Cr}\right)}{I_{\gamma}\left({ }^{54} \mathrm{Cr}\right) / N_{\mathrm{pro}}\left({ }^{54} \mathrm{Cr}\right)} B\left(\mathrm{E} 2,{ }^{54} \mathrm{Cr}\right)
$$

	$\begin{gathered} \mathbf{E}_{\gamma} \\ {[\mathrm{keV}]} \end{gathered}$	$\mathrm{N}_{\text {ions }}$	$\begin{aligned} & \mathrm{I}_{\gamma} \\ & \text { eff.cor. } \end{aligned}$	$\begin{gathered} B(E 2) \\ {[W u]} \end{gathered}$	B(E2) [Wu]
${ }^{54} \mathrm{Cr}$	835	$3.0 \cdot 10^{7}$	21300	Normalisation	14.6(6)
${ }^{56} \mathrm{Cr}$	1006	$1.5 \cdot 10^{7}$	6500	8.7 (3.0)	---
${ }^{58} \mathrm{Cr}$	880	$1.0 \cdot 10^{7}$	7800	14.8 (4.2)	---

A. Bürger et al., Phys. Lett B622, 29 (2005)

RISING \rightarrow PRESPEC \rightarrow HISPEC/DESPEC

NUSTAR Experiments
 (NUclear STructure Astrophysics and Reactions)

Exotic Nuclei

- Spectroscopy
- Reactions
- Mass/gs. prop.

PreSeparator

Degrader 1
Production Target

50 m

NUSTAR Experiments (Start version) (NUclear STructure Astrophysics and Reactions)

Exotic Nuclei

- Spectroscopy
- Reactions
- Mass/gs. prop.
Projectile:
- Elements $p-U$
- Energy up to $1.5 \mathrm{GeV} / \mathrm{u}$
- Pulsed and CW beams
- Intensity $10^{12}-10^{13} / \mathrm{s}$
(depending on element)
Acceptanze
$\varepsilon_{x}=\varepsilon_{y}=40 \pi \mathrm{~mm} \mathrm{mrad}$
$\Phi_{x}= \pm 40 \mathrm{mrad}$
$\Phi_{y}= \pm 20 \mathrm{mrad}$
$\triangle P / P= \pm 2.5 \%$

Internal target

Pre-

Mass: Fundamental Property of Nuclei

Binding energies
Mass models
Shell structure
Correlations pairing

Reaction phase space Q-values
Reaction probabilities
The reach of nuclei Drip lines
> Nuclear astrophysics Paths of nucleosynthesis

Fundamental symmetries Metrology

Y. Litvinov

ILIMA: Set-Up

Isochronous Mass Spectrometry in the CR

$$
\gamma \rightarrow \gamma_{t}
$$

Schottky Mass Spectrometry in the CR \& NESR

$$
\frac{\Delta v}{v} \rightarrow 0
$$

SMS and IMS

SOHOTKY MASS SPECTROMEIRY

Schottky Pick-Up in the ESR

SMS: Broad Band Frequency Spectra

ILIMA: Masses and Halflives

NUSTAR Experiments
 (NUclear STructure Astrophysics and Reactions)

Exotic Nuclei

- Spectroscopy
- Reactions
- Mass/gs. prop.

PreSeparator

Degrader 1
${ }^{2}$ Production Target

50 m

Reactions with Relativistic Radioactive Beams (2017/18)

Reactions with Relativistic Radioactive Beams (full)

Kinematically complete measurement of reactions with high-energy secondary beams
Nuclear Astrophysics
Structure of exotic nuclei
Neutron-rich matter

R3B Si Recoil Tracker

Tasks:

- Simulations of target-recoil detector
- elastic, inelastic, quasifree ...
- Si-microstrip prototype testing
- micro-strip, MAPS ...
- Si tracker mechanical design
project started 1 April 2009 - Installation at R3B in 2013

- Mechanical integration of target-recoil detector sub-systems
- with LH2 target and calorimeter
- FEE and DAQ
- 100k channels, new ASIC design (low thresholds, self-triggering)
- Si-tracker construction, assembly and installation
- Liverpool Semiconductor Centre (ATLAS, LHCb, etc)
- Si-ladder assembly testing

CALIFA CsI/phoswitch calorimeter

General design of the detector based on kinematical considerations

"Egg" shape Highly segmented Thick detection volume Scintillation based performant photo-sensors

Crystal and photosensors

$$
\text { Barrel } \rightarrow \mathrm{CsI}+\mathrm{APD}
$$

$1 \mathrm{~cm}^{3}$ and $662 \mathrm{keV} \gamma$

CALIFA forward endcap

Phoswich solution is being investigated

Engineering design and Mechanical structure \rightarrow based on carbon fiber

Neutron detector NeuLAND

σ_{t}	$<100 \mathrm{ps}$
$\sigma_{\mathrm{x}, \mathrm{y}, \mathrm{z}}$	$\approx 1 \mathrm{~cm}$
$\sigma_{\mathrm{E}^{*}}$	20 keV
size	$2 \times 2 \times 0.8 \mathrm{~m}^{3}$
area	$\sim 140 \mathrm{~m}^{2}$
\# ch.	~ 10.000
weight	$\sim 15 \mathrm{t}$

detection principle based on
Resistive Plate Chambers plus iron converters

status:

\checkmark proof of principle: RPC excellent for slow protons
\checkmark prototypes with included converter as electrodes: efficiency of 99%, time resolution $\sim 50 \mathrm{ps}$

NeuLAND detector based on scintillators

Simulation of alternative concept:
Studies with different bar size:

- bars of $5 \times 5 \mathrm{~cm}$ (1600 bars and 3200 PMs)
- bars of $3 \times 3 \mathrm{~cm}$
(4500 bars and 9000 PMs)

NUSTAR Experiments
 (NUclear STructure Astrophysics and Reactions)

Exotic Nuclei

- Spectroscopy
- Reactions
- Mass/gs. prop.

PreSeparator

Degrader 1
Production Target

50 m

EXL: EXotic Nuclei Studied in Light-Ion Induced Reactions at the NESR Storage Ring

Realization of an RIB electron collider setup The ELISe experiment

- 125-500 MeV electrons
- 200-740 MeV/u RIBs
\rightarrow up to 1.5 GeV CM energy
- spectrometer setup at the interaction zone \& detector system in ring arcs
- Part of the core facility
http://www.gsi.de/fair/reports/btr.html
AIC option:
- 30 MeV antiprotons
- detector system in ring arcs
- schottky probes

Why should one try to collide beams?
 - trying to get through the eye of the needle

- Target and scattered off particles can be detected
\rightarrow excitation and de-excitation process is studied
- 'no target absorption'
\rightarrow unhampered detection
- kinematical focusing
\rightarrow solid angle
\rightarrow Mott cross section enhanced (small angles)
- luminosity for unstable nuclei from a chemically non selective fragmentation facility
$\rightarrow 100 \mu \mathrm{~m} \times 100 \mu \mathrm{~m}$ interaction area

Summary: there is no smoking gun ...

FIN

Thanks to: T. Aumann, M. Gorska, Yu. Litvinov, ...

Final Remarks

- FAIR offers unique opportunities
- The process of building has now been started in a first reduced version offering already a viable program for all four communities

APPA CBM panda NUSTAR

- Stay tuned! New website: http://www.fair-center.eu/

A state-of-the-art accelerator complex in Europe

