Crossing bounds: From exotic nuclear systems to FAIR

H. Simon GSI Darmstadt

Joint Helmholtz-Rosatom School for Young Scientists at FAIR

Hirschegg/Austria 201102 12 - 17

My main projects

Electronics for NUSTAR/FAIR

unstable nuclear systems

ELISe e⁻ scattering with radioactive beams

BuTiS campus clock

Menu

- 1. NUSTAR: Nuclear Structure Astrophysics & Reactions
- 2. Halo Nuclei: Low density nuclear matter
- 3. Extremely neutron rich systems
- 4. EOS studies via nuclear excitations
- 5. The future is FAIR
- 6. Summary

- Primary input to Astrophysics is the observations of (very) distant objects through astronomers
- ➔ indirect measurements
- At the first glance for we just look at rather hot surfaces of stars ...

Thermodynamics defines the boundaries

... and that's what we want to know.

Start: Basic properties:

- Temperature
- Size
- **Observables:**
- Apparent Magnitude
- Spectrum

Magnitude/Distance analysis (Inverse Square Law)

Apparent magnitude and absolute magnitude (or luminosity) can only be related if distance is known !

Example: solar luminosity $L_{sol} = 3.846 \times 10^{26} \text{ W}$ @ 1AU flux is F = 1365 W m⁻² @ 10pc it is F = 3.208 × 10⁻¹⁰ W m⁻²

 comparison is done at 10pc (absolute magnitude)

Magnitude/Distance analysis

E.g. direct method:

Parallax measurement $1pc = 3.086... 10^{16} m$ = 3.262... ly

High Precision Parallax Collecting Satellite 1989-1993 0.001" reolution \rightarrow 1% (30lv) 400

1% (30ly) 400 stars, 10% (300ly) 28000 stars

(Milky Way diameter: 100'000 ly)

➔ indirect methods: red-shift, cepheids, SN

1"

1 AE

Е

1pc

Spectral analysis (blackbody radiation)

H. Simon • Crossing bounds: From exotic nucl. sys. to FAIR

Spectral analysis (blackbody radiation)

and conditions how the light was emitted ...

Stefan-Boltzmann eq. (σ = 5.67... 10⁻⁸ W m⁻² K⁻⁴)

L = $4\pi R^2 \sigma T^4$ e.g. Sun T: 5777K R: 0.6955 Mio km \rightarrow L: 3.839 ×10²⁶ W

Model input
 T, L, R from M, m, r & absorption

Lifetime measurements with radioisotopes

¹⁴⁷Sm $\xrightarrow{\alpha}$ ¹⁴³Nd, T_{1/2}:1.06 x 10¹¹ y ¹⁴⁴Nd α decay, T_{1/2}:2.29 x 10¹⁵ y

Appollo 15: "genesis rock"

... so the sun should be as old (at least) !

FAIRH. Simon • Crossing bounds: From exotic nucl. sys. to

Consequences:

Stars use nuclear energy (fusion)
→ seed production up ~ A=56
→ 'slow' process

solar abundances

H. Simon • Crossing bounds: From exotic nucl. sys. to FAIR

... predominantly via slow and rapid neutron capture

Tomography of the sun via neutrinos !

... and radioactive isotopes in the sun

H. Simon • Crossing bounds: From exotic nucl. sys. to FAIR

⁷Be + p \rightarrow ⁸B + γ in the laboratory (direct measurement) ⁷Be is unstable (T_{1/2} = 53d)

Temperature in the sun: ~ **15 Mio K** av. kin. energy $\frac{3}{2}$ kT = 8,6 · 10⁻⁵ eV/K * 1.5 · 10⁷ K = 1290 eV

high energy tail of Boltzmann distribution
 c e^{-E/kT}

Max.: $(bkT/2)^{2/3}=1.22 (Z_1^2 Z_2^2 \mu T_6^2)^{1/3} keV$

- Coulomb repulsion
 → tunneling through barrier
 ∞ e^{-b/√E}
- → low energy x-sec (de Broglie wave length)
 ∞ π (h/p)² i.e. 1/E
- Maximum ⁷Be(p, γ) @ 18keV, very low energy on MeV scale !

LUNA (2009): ${}^{3}\text{He}(\alpha, \gamma){}^{7}\text{Be}$ 0.02 pb (2 events/m) @ 16keV searching for a resonance around 22keV (Gamov peak).

Study inverse process (detailed balance) ⁸B is unstable ($T_{1/2} = 0.77s$) \rightarrow ⁸B(γ ,p) measure cross section σ_{CD} and

relative energy ⁷Be and p (starts at 0 threshold)

virtual photon theory

$$k_{v} = (E_{rel} + Q)/\hbar c$$
 $k_{cm}^{2} = 2\mu E_{rel}/\hbar^{2}$ Q=138 keV

 $\sigma(E) = S(E) / E e^{-b/\sqrt{E}}$ \rightarrow S(E) describes nuclear structure

To be explained ...

Radioactive Beam Studies:

Specific (\mathbf{x}, γ) reactions ⁴He(2n, γ)⁶He, ⁷Be(p, γ)⁸B, ¹⁴C(n, γ)¹⁵C, ²⁶S(p, γ)²⁷P, ¹⁵O(2p, γ)¹⁷Ne, $^{31,32}Cl(p,\gamma)^{32,33}Ar, \dots$

70

80

N (Z=50)

90

Structure input for extrapolation of nuclear data

Measured masses (1995)50 60 Neutron matter very exotic systems, ^xn, ^{5,7}H, ^{9,10}He, ^{12,13}Li, ... precise study asymmetry EOS via excitations

Mass difference (MeV)

100

110

At the Outskirts: Three bodies find together

Physics with radioactive beams

What's exotic in Exotic Nuclei

H. Simon • Crossing bounds: From exotic nucl. sys. to FAIR

Exotica: Haloes

Threshold phenomenon resulting from a bound state close to the continuum

Low separation energy + short range of nuclear force allow tunnelling into the space surrounding the core

Cross section reflects size (Tanihata 1985)

I. Tanihata et al., PRL 55 (1985) 2676

$$\sigma_I(p,t) = \pi [R_I(p) + R_I(t)]^2$$

R(¹¹Li) = 3.10(14) fm

Transmission Experiment

H. Simon • Crossing bounds: From exotic nucl. sys. to FAIR

G

Observation of a Large Reaction Cross Section in the Drip-Line Nucleus ²²C

K. Tanaka,¹ T. Yamaguchi,² T. Suzuki,² T. Ohtsubo,³ M. Fukuda,⁴ D. Nishimura,⁴ M. Takechi,^{4,1} K. Ogata,⁵ A. Ozawa,⁶ T. Izumikawa,⁷ T. Aiba,³ N. Aoi,¹ H. Baba,¹ Y. Hashizume,⁶ K. Inafuku,⁸ N. Iwasa,⁸ K. Kobayashi,² M. Komuro,² Y. Kondo,⁹ T. Kubo,¹ M. Kurokawa,¹ T. Matsuyama,³ S. Michimasa,^{1,*} T. Motobayashi,¹ T. Nakabayashi,⁹ S. Nakajima,² T. Nakamura,⁹ H. Sakurai,¹ R. Shinoda,² M. Shinohara,⁹ H. Suzuki,^{10,6} E. Takeshita,^{1,†} S. Takeuchi,¹ Y. Togano,¹¹ K. Yamada,¹ T. Yasuno,⁶ and M. Yoshitake²

PRL 104 (2010) 062701

Shell reordering: Halo formation

Mean-field modifications

surface composed of diffuse neutron matter

derivative of mean field potential weaker and spin-orbit interaction reduced

Nucleon-nucleon interaction

σσττ interaction :

coupling of p-n spin-orbit partners in partly occupied orbits

O: missing πd_{5/2} do not bind vd_{3/2}→N=16 T.Otsuka et al.,PRL87 (2001) 082502 (tensor) PRL95 (2005) 232502

Repulsive 3N force

T.Otsuka et al., PRL105 (2010) 032501

Bridging the A=5,8 gaps for heavy element creation

- Bypass reactions to triple-α process stellar burning
- ⁸Be(n,γ)⁹Be(α,n)¹²C
- ⁴He(2n,γ)⁶He(α,n)⁹Be

e.g. core collapse supernovae possibly n-star mergers

Continuum spectroscopy

(⁴He($2n,\gamma$)⁶He backwards)

ALADIN-LAND Setup (kinematically complete)

Experimental Setup (less schematic)

H. Simon • Crossing bounds: From exotic nucl. sys. to FAIR

Exotic structure across the dripline:

P.G. Hansen, Nature 328 (1987) 476

➔ most exotic systems

nearly unbiased & clean production !

H. Stimoon Occossing bounds From exotion out systoc FARR

Exploring Unbound Lithium isotopes

Y. Aksyutina, H. Johansson et al., PL**B666** (2008) 430 H.T. Johansson, Y. Aksyutina, Nucl. Phys. A847 (2010) 66

do/dE (mb/MeV)

0.2

0.0

Intensities for detailed studies

Results and current limits ...

- Comprehensive study of exotic unbound systems with extreme A/Z
- Structure information unveiled

 e.g. Unbound oxygen isotopes Results and current limits ...

 Comprehensive study of exotic unbound systems with extreme A/Z

27F

26

 Structure information unveiled

26F

25

25F

24(

• e.g.

Unbound oxygen isotopes

What next ? Target recoil detection !

Quasi-free scattering in inverse kinematics

redundant experimental information:

kinematical reconstruction from proton momenta plus gamma rays, recoil momentum, invariant mass sensitivity not limited to surface

- \rightarrow spectral functions
- \rightarrow knockout from deeply bound states

cluster knockout reactions

New Experiments (Aug/Sep 2010) R³B/FAIR precursor: Setup at Cave C

Experimental Setup (less schematic)

QFS with Exotic Nuclei:¹⁷Ne(p,2p)¹⁵O+p The two-proton Halo (?) nucleus ¹⁷Ne

Pilot experiments with ¹²C, ¹⁷Ne and Ni isotopes already performed at the LAND-R3B setup are under analysis ...

Angular Correlations measured with Si-strip detectors for ¹⁷Ne(p,2p)¹⁵O+p

 $\Delta\theta$ ~180°, $\Delta\phi$ ~83° (sim. as for free pp scattering)

The origin of elements

																		*	1. 1. A.		12
H Li B Na M	-										B Al	C Si	N P	O S	F	He Ne Ar					
кс			V		Mn		Co		Cu							Kr		-			
Rb S	_	-	Nb						Ag			Sn		Те	_	Xe					
Cs B			denter.	10000000	Re	1.1.1.1.1.1.1	10000000		Au	Hg	Ti	Pb	Bi	Po	At	Rn					Sun
Fr R	a Lr	Rf	Db	Sg	Bh	Hs	Mit	Ds	Rg												Sull
	La Ac												Tm Md								
	Hy He Ca Ne	g bang /droge elium l arbon eon bu kygen	en Bu Burni burni urning	irnin ing ing J	ythe: g CN	sis IO		Equi Spal s-pro	latior	m re n in tl s/p-p	action he IS roce	SM ess ir	n AGE			ration					
Eta	a Car	rinae	;																		

Nucleosynthesis ($A \ge 56$)

H. Simon • Crossing bounds: From exotic nucl. sys. to FAIR

44/90

Nucleosynthesis in the r-process (rapid neutron capture)

The dipole response of n-rich nuclei and the r-process

Studies of neutron-rich nuclei in the laboratory (survey)

Pygmy Resonances enhance (γ, n) via direct capture ?!

Can we learn something on neutron matter?

Neutron Star

The nuclear equation of state:

dependence on n-p asymmetry and density

- symmetry energy and its density dependence close to saturation density

 \rightarrow properties of n-rich nuclei ?

Dipole vibrations, neutron-skin thickness

- symmetry energy at higher densities \rightarrow reactions with n-rich nuclei (n-p flow)

Dipole-strength distributions in neutron-rich Sn isotopes

P. Ring et al.

Pygmy dipole strength, Neutron Skin, and the Equation of State of neutron-rich Matter

Relation between dipole strength and n-skin thickness

n-skin thickness derived from dipole strength

"...,the pygmy dipole resonance may place important constraints on the neutron skin of heavy nuclei and, as a result, on the equation of state of neutron-rich matter."

J. Piekarewicz, PRC 73 (2006) 044325

Constraints on EoS of neutron-rich matter derived from dipole strength of n-rich Sn isotopes

symmetry energy $a_4 = 32.0 \pm 1.8$ MeV pressure $p_0 = 2.3 \pm 0.8$ MeV/fm³

Additional Information from γ spectroscopy

Intermittend Summary: Why do we study nuclear physics ...

- Towards a Consistent Understanding of the Atomic Nucleus

Preparing for FAIR

~2017/18

Intensity increase 3-4 orders of magnitude !

Production of radioactive beams: Methods

H. Geissel, G. Münzenberg, K. Riisager, Annu. Rev. Nucl. Part. Sci. 45 (1995) 163

ISOL:

- spallation (~1 GeV protons)
- fission: p-induced, fast neutrons (d beam), slow neutrons (reactor), photons (e⁻ beam)
- fusion/evaporation, multi-nucleon transfer

IN-FLIGHT:

relativistic heavy ions (50 MeV/u – 1 GeV/u)

- fragmentation
- fission (elm. or nuclear induced)

RIBs produced by fragmentation or fission

(time of flight through FRS ~300ns)

Layout and Design parameters for the Super-FRS

Comparison of FRS with Super-FRS, intensity gain

					Index a	yan	lactor	
	$B\rho_{max}$	∆p/p	ΔΦ _x ,	$\Delta \Phi_{y}$	resolving power	¹⁹ C	¹³² Sn	
FRS	18 Tm	1.0 %	±13,	±13 mrad	1500	1	1	
Super-FRS	20 Tm	2.5 %	±40,	±20 mrad	1500	5	10	
					including primary rate	250	20 000	

Separation Performance of the Super-FRS

1.1 A GeV ²³⁸U on 4 g/cm² C target, two AI degraders d/R=0.3, d/R=0.7

Production of radioactive beams by fragmentation and fission

Detector Instrumentation of the SuperFRS

B ρ - Δ **E**-**TOF** method: **Requirements**

NO CHARGE STATES !

$$B\rho = A/Z \cdot \beta \cdot \gamma \implies A/Z, P$$
$$TOF = L/\beta \implies Z$$
$$\Delta E \sim Z^2/\beta^2 \implies Z$$

Pos res. $\sigma \leq 1 \text{ mm}$ Timing res. σ : 50 ps ΔE resolution σ : 1-2 %

- Position: Wirechambers (single event readout)/Diamond
- ΔE : MUSIC/TEGIC
- TOF: Plastic/Diamond

Fast sampling & timing techniques

Challenge:

- Beam identification at rates up to 1MHz.
- FoF over km distance with sub-ns resolution.
- $> \Delta E$ resolution 2-3%

Solution:

- Fast sampling and FPGA based digital signal processing & pulse shape analysis.
- Campus wide Time Distribution System based on FAIR BuTiS timing system.
- TAC or DLL based Frontends.
- First studies using Tacquila@R³B/Cave-C.
- Digital Signal Processing (for PSP, MUSIC) in collaboration with KVI Groningen/JSI Lubljana

Coulomb excitation of a primary beam – ⁸⁴Kr

M. Gorska

New Shell Structure: Cr isotopes

H. Simon • Crossing bounds: From exotic nucl. sys. to FAIR

RISING → PRESPEC → HISPEC/DESPEC

NUSTAR Experiments (NUclear STructure Astrophysics and Reactions)

2 NOVEMBER 2007 VOL 318 SCIENCE www.sciencemag.org

NUSTAR Experiments (Start version)

(NUclear STructure Astrophysics and Reactions)

Mass: Fundamental Property of Nuclei

- Binding energies
- Mass models
- Shell structure
- Correlations
- pairing
- Reaction phase space
- Q-values
- Reaction probabilities
- > The reach of nuclei
- Drip lines
- > Nuclear astrophysics
- Paths of nucleosynthesis
- Fundamental symmetries
- Metrology
- ≻

Importance of Atomic Masses

SMS and IMS

SCHOTTKY MASS SPECTROMETRY

ISOCHRONOUS MASS SPECTROMETRY

Schottky Pick-Up in the ESR

SMS: Broad Band Frequency Spectra

ILIMA: Masses and Halflives

NUSTAR Experiments (NUclear STructure Astrophysics and Reactions)

2 NOVEMBER 2007 VOL 318 SCIENCE www.sciencemag.org

Reactions with Relativistic Radioactive Beams (2017/18)

Reactions with Relativistic Radioactive Beams (full)

Kinematically complete measurement of reactions with high-energy secondary beams

Nuclear Astrophysics

Structure of exotic nuclei

Neutron-rich matter

R3B Si Recoil Tracker

Tasks:

- Simulations of target-recoil detector
 - elastic, inelastic, quasifree ...
- Si-microstrip prototype testing
 - micro-strip, MAPS ...
- Si tracker mechanical design
- Mechanical integration of target-recoil detector sub-systems
 - with LH2 target and calorimeter
- FEE and DAQ
 - 100k channels, new ASIC design (low thresholds, self-triggering)
- Si-tracker construction, assembly and installation
 - Liverpool Semiconductor Centre (ATLAS, LHCb, etc)
- Si-ladder assembly testing

Installation at R3B in 2013

project started 1 April 2009

CALIFA Csl/phoswitch calorimeter

General design of the detector based on kinematical considerations

"Egg" shape Highly segmented Thick detection volume Scintillation based performant photo-sensors

Crystal and photosensors

Barrel \rightarrow CsI+APD

CALIFA forward endcap

Phoswich solution is being investigated

Engineering design and Mechanical structure \rightarrow based on carbon fiber

Neutron detector NeuLAND

σ_{t}	< 100 ps
σ _{x,y,z}	≈ 1 cm
σ_{E^*}	20 keV
size	2 x 2 x 0.8 m ³
area	~ 140 m²
# ch.	~ 10.000
weight	~ 15 t

detection principle based on Resistive Plate Chambers plus iron converters

status:

 proof of principle: RPC excellent for slow protons
 prototypes with included converter as electrodes: efficiency of 99%, time resolution ~50 ps

NeuLAND detector based on scintillators

Simulation of alternative concept:

Studies with different bar size:
bars of 5 x 5 cm (1600 bars and 3200 PMs)

 bars of 3 x 3 cm (4500 bars and 9000 PMs)

84/90

NUSTAR Experiments (NUclear STructure Astrophysics and Reactions)

EXL: EXotic Nuclei Studied in Light-Ion Induced Reactions at the NESR Storage Ring

Realization of an RIB electron collider setup The ELISe experiment

125-500 MeV electrons
200-740 MeV/u RIBs

→ up to 1.5 GeV CM energy

- spectrometer setup at the interaction zone & detector system in ring arcs
- Part of the core facility http://www.gsi.de/fair/reports/btr.html

AIC option:

- 30 MeV antiprotons
- detector system in ring arcs
- schottky probes

Why should one try to collide beams ? - trying to get through the eye of the needle

- Target and scattered off particles can be detected
- ➔ excitation and de-excitation process is studied
- 'no target absorption'
- ➔ unhampered detection
- kinematical focusing
- → solid angle
- → Mott cross section enhanced (small angles)
- luminosity for unstable nuclei from a chemically non selective fragmentation facility
- → 100µm x 100µm interaction area

Summary: there is no smoking gun ...

FIN

Thanks to: T. Aumann, M. Gorska, Yu. Litvinov, ...

Final Remarks

- FAIR offers unique opportunities
- The process of building has now been started in a first reduced version offering already a viable program for all four communities
 - APPA CBM panda NUSTAR
- Stay tuned! New website: http://www.fair-center.eu/

A state-of-the-art accelerator complex in Europe