Clustering algorithms for the CBM calorimeter

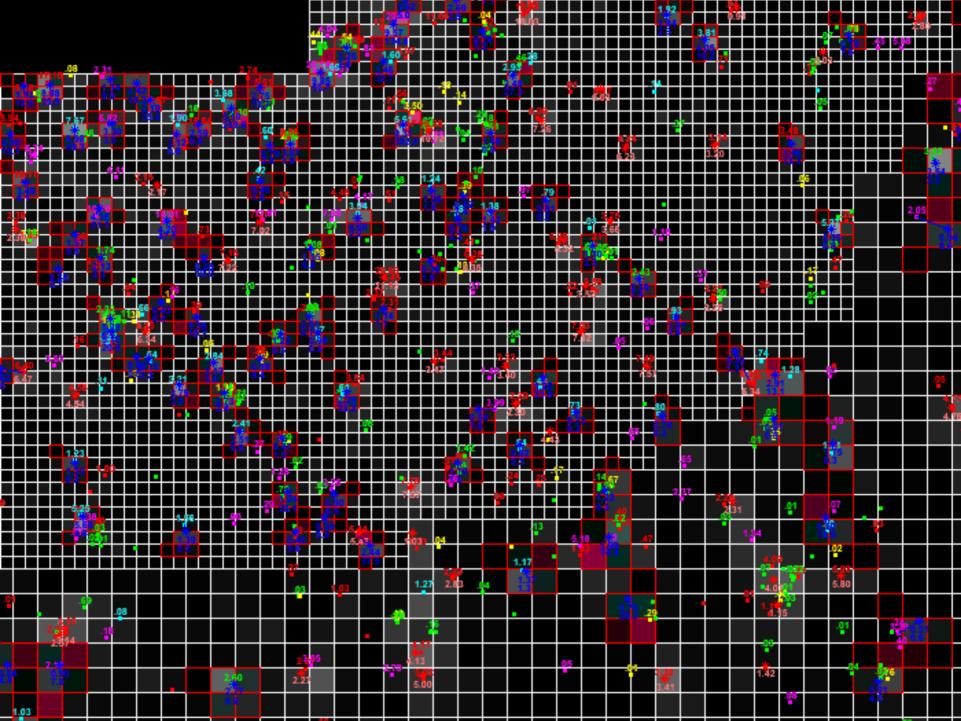
Mikhail Prokudin

Outline

- Why we need clustering
 - Reconstruction in calorimeter

CBM calorimeter

- Electron and muon option
- "Common" clustering procedure
- Cluster finding in electron option
- Cluster finding in muon option


Reconstruction in calorimeter

Photon reconstruction

- Energy
- Position

Momentum: all photons from primary vertex

- General case
 - Just single photon reconstruction
- ► LHC
 - Single photon/pair from π^0 decay?
- Heavy ion experiments
 - Shower overlaps (occupancy)
 - energy deposition from different photons in one cell
 - shower shape and fitting for unfolding

Requrements

Cluster should be large

Information for unfolding procedure

Cluster should be small

 fitting of 2 clusters with 2 photons each is much faster than fitting 1 cluster with 4 photons

... and results are more accurate

- minimize contamination of hadrons
- not less than 3 cells per photon
 - ►3 free parameters

Calorimeter in CBM experiment

Electron option

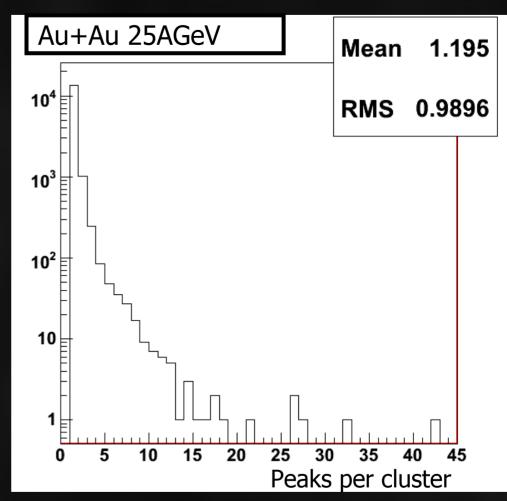
Muon option

Geometry

Electron option

- Distance to target: 12 m
- Cell size: 3×3, 6×6, 12×12 cm
- Sampling: 140 layers (25X₀)
 - ▶ 1.0 mm lead
 - 1.0 mm scintillator
- Acceptance: 5-25°
- Energy resolution: 7%/sqrt(E)
- ~14000 readout channels

Muon option

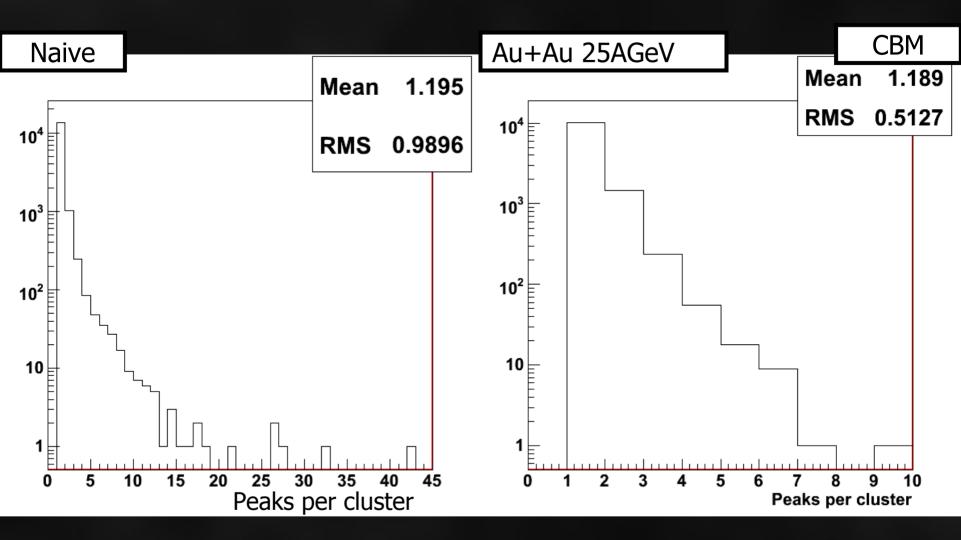

- Distance to target: 1.5 m
- Cell size: 2.5×2.5 cm
- Sampling: 70 layers (20X₀)
 - ▶ 1.0 mm tungsten
 - 1.5 mm scintillator
- Acceptance: 5-45°
- Energy resolution 7.6%/sqrt(E)
- ~8000 readout channels

Calorimeter of muon option could be used as a central calorimeter region in electron option.

Cluster finding. Naive approach

Cluster definition:

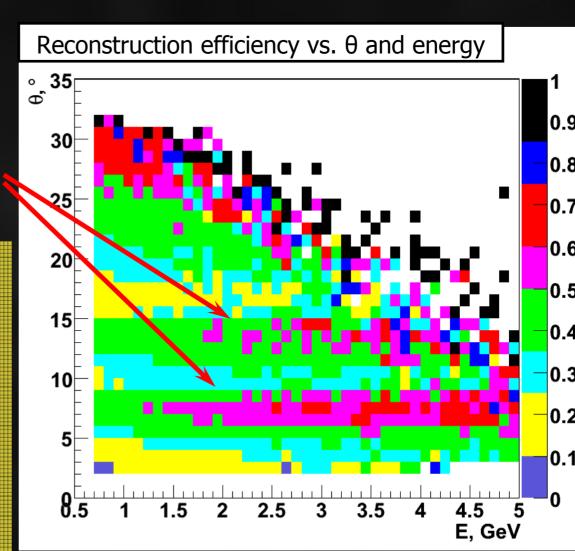
- connected area of cells with energy deposition above the threshold
- threshold can be found from MC
- Occupancy differs $\sim 10^2$ times
 - partially compensated by segmentation
 - lost clusters in periphery of calorimeter
 - create too large clusters in central region
- No chance to fit cluster with >7 peaks
 - central region is lost!
- Clusters with size <3 cells require additional information</p>


Cluster finding

Find peak above threshold

- peaks associated with charged track are removed from the consideration
- Construct a subcluster with certain number of cells around the peak
 - it should contain 2×2 submatrix with maximum energy of 3×3 matrix around peak
 - add a cell from 3×3 matrix with minimum energy deposition
 adds information for unfolding

Cluster is a set of preclusters with common cells


Comparison

Number of peaks per cluster lower using new approach

AuAu 25 GeV UrQMD events

- 35% reconstruction efficiency
- Boundaries between calorimeter regions
 - occupancy

Cluster finding in muon option

Main difference with electron option:

small (2.5×2.5 cm) cell size and large (up to 45°) impact angle

Keep general procedure

- maximum location
- precluster formation
- cluster is a set of preclusters with common cells
- In but use a shower shape for precluster formation

shower is "more long than wide"

- precluster size as a parameter
 - small clusters in inner regions and large in outer

Precluster formation

Procedure

- local maximum
- 2x2 maximum matrix
- center of gravity of 2x2 maximum matrix (☆)
- ellipse
 - center of ellipse located on line from center of calorimeter to found center of gravity
- sort all cells on area intersect with ellipse
- precluster
 n cells with maximum intersection area

$$E_{photon} = 16 \text{ GeV}, \text{ Angle} = 35^{\circ}$$

$$E_{Fulr} = 1.2138, E_{2x2} = 0.9253(76\%), E_{3x3} = 0.9465(77\%), E_{cluster} = 1.1201(92\%)$$

$$30 = 0.35$$

$$0.35$$

$$0.3$$

$$0.25$$

$$0.2$$

$$0.2$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.11$$

$$0.15$$

$$0.11$$

$$0.15$$

$$0.11$$

$$0.15$$

$$0.11$$

$$0.15$$

$$0.15$$

$$0.11$$

$$0.15$$

$$0.11$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

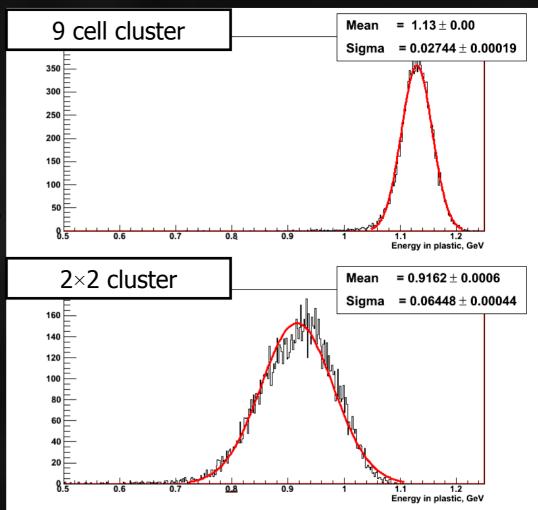
$$0.15$$

$$0.15$$

$$0.15$$

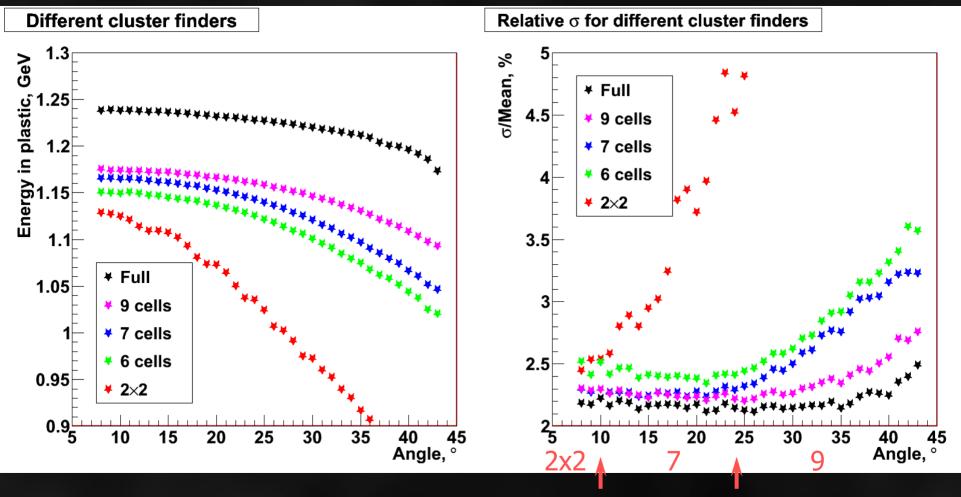
$$0.15$$

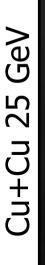
$$0.15$$

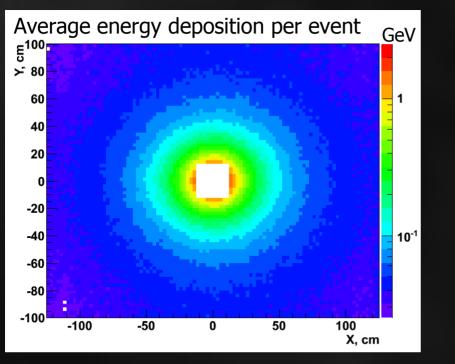

$$0.15$$

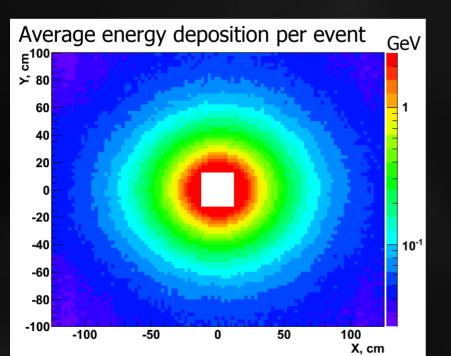
X, cm

Precluster formation

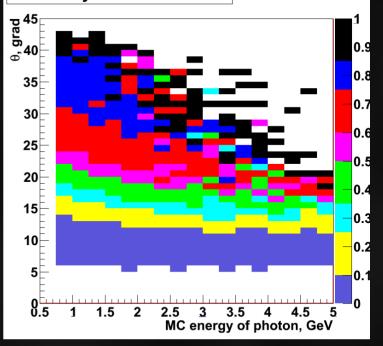

Parameters

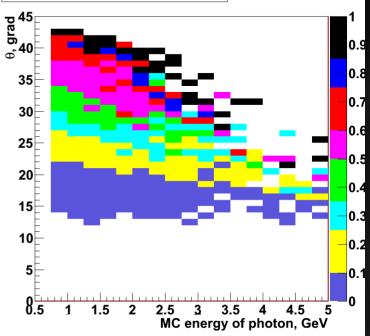

- cluster size
 - ▶ keep as low as possible
- semiaxes of ellipse
- distance from center of mass to ellipse center




Cluster size

16 GeV photons





Efficiency of reconstruction

Efficiency of reconstruction

Au+Au 25 GeV

Conclusions

► 3 algorithms of clustering was presented

- "common" one does not work
 - occupancy variations
- ...clusters constructed near maximums of energy deposition
- ..use of shower shape for large impact angles and small cell size