

ATOM PROBE TOMOGRAPHY STUDY OF NANOSCALED FEATURES OF MATTERS

S. V. Rogozhkin,

Institute for Theoretical and Experimental Physics, Moscow, Russia Sergey.Rogozhkin@itep.ru

JOINT HELMHOLTZ – ROSATOM SCHOOL AND ITEP WINTER SCHOOL OF PHYSICS «EXTREME STATE OF MATTER»

Contents

Introduction

Atom probe tomography

Examples of atom probe study

Nano-scaled features in NPP vessel: VVER-440 vessel welds Nano-scaled features in new generation structural materials: ferritic-martensitic steel Rusfer EK-181 oxide dispersion strengthened steel ODS Eurofer Influence of irradiation on nanostructure of structural steels IIIII ...

Conclusion

Irradiation effect: time and size scales effects

Microscopy as instrument for material development

Early microscope

Requirements:

- Macro scale \Rightarrow atomic scale
- 3-dimentional
- Chemistry identification
- In-situ

\bigcirc

Comparison of different techniques

- ✓ Optic (standard, near-field)
- ✓ Probe microscopy (AFM,STM)
- ✓ Scanning electron microscopy
- ✓ Small angular neutron scattering
- ✓ Positron annihilation spectroscopy
- ✓ Transmission electron microscopy (HRTEM, 3D)

Field-ion atom probe microscopy: Field ion=>1D AP=> 3D AP=> TAP =>...

Физика наномасштабов – наиболее динамичная область радиационного материаловедения

Процессы радиационного повреждения материалов проходят на наномасштабах,

Наномасштабные изменения структурно-фазового состояния определяют деградацию конструкционных материалов,

Целенаправленное формирование наномасштабной структуры позволяет получить уникальные свойства материалов.

У истоков зарождения

ультрамикроскопических исследований в ИТЭФ

<u>Начало 60-х</u>

Г.М. Кукавадзе, руководитель массспектрометрической группы Лаборатории №1, принял решение о развитии автоионно- микроскопических исследований в ИТЭФ.

Воплощением этого «проекта» в жизнь занялись аспирант МФТИ В.А. Кузнецов, дипломник МИФИ А.Л. Суворов ...

<u>Декабрь 1966 г.</u> – первый автоионный микроскоп ИТЭФ собран и успешно запущен.

С <u>января 1967 г.</u> – стартовали систематические исследования образцов-игл, облученных дейтронами 5 – 10 МэВ, α частицами 23 МэВ, протонами 24 МэВ.

В 1964 году В.Г.Фирсовым и В.М.Бяковым была предложена идея использования µ+ мезона для исследования свойств конденсированных средах.

В настоящее время в ИТЭФе функционируют угловая и временная установки позитронной спектроскопии.

Современная экспериментальная база ИТЭФ для получения информации на нано- и атомных масштабах

Атомно-зондовая томография

> Просвечивающая Электронная микроскопия

Сканирующая атомно-силовая и туннельная микроскопия

Позитронная ⁹ аннигиляционная спектроскопия

От автоионной микроскопии к атомно-зондовой томографии

Увеличение ~ 10⁷ Латеральное разрешение 2-3 Å

Muller E.W., 1951

Field-ion Microscope - E.W. Mueller (1951)

Grain boundary Screw Dislocation

Interface

1 nm

10 nm

возможности автоионной микроскопии

ЕДИНИЧНЫЕ ВАКАНСИИ (1), КОМПЛЕКСЫ СОБСТВЕННЫЙ МЕЖУЗЕЛЬНЫЙ АТОМ – АТОМ ПРИМЕСИ (2), КОМПАКТНЫЕ КОМПЛЕКСЫ ВАКАНСИЙ МАЛОЙ КРАТНОСТИ (3), СЕЧЕНИЕ НЕБОЛЬШОЙ ОБЕДНЕННОЙ ЗОНЫ (4), ДВА СЕЧЕНИЯ ИЗОЛИРОВАННОЙ ОБЕДНЕННОЙ ЗОНЫ (5)

ПОЛУЧЕННЫЕ В ПРОЦЕССЕ ПОСЛЕДОВАТЕЛЬНОГО ИСПАРЕНИЯ ПОЛЕМ АВТОИОННЫЕ ИЗОБРАЖЕНИЯ ДВУХ ПОВЕРХНОСТЕЙ (С РАЗНИЦЕЙ В ПЯТЬ АТОМНЫХ СЛОЕВ)

Field Evaporation of atoms: contrast of chemical species

АВТОИОННОЕ ИЗОБРАЖЕНИЕ УЧАСТКА ПОВЕРХНОСТИ ОБРАЗЦА ИЗ СПЛАВА W-1.5% ThO₂ (ВТ-15), ОБЛУЧЕННОГО ИОНАМИ Ar⁺ С ЭНЕРГИЕЙ 35 кэВ.

Томографический атомный зонд Исследование многокомпонентных материалов

- •Высокое разрешение по массе: $M/\Delta M \ge 600$
- •Высокая чувствительность:

$$\approx 50 \, ppm$$
¹⁶

Томографические атомнозондовые исследования наноразмерных особенностей структуры материалов корпусов реакторов ВВЭР

Исследования механизмов охрупчивания

Знание механизмов охрупчивания позволяет:

Более точно прогнозировать ресурс реактора,
 отрабатывать методики восстановления корпусов реакторов,
 обосновать принципы разработки новых материалов.

20

Просвечивающая электронная микроскопия

преципитаты

Причина охрупчивания корпусов энергетических реакторов - радиационно-индуцированные

Причина охрупчивания корпусов энергетических реакторов - радиационно-индуцированные преципитаты

Малоугловое рассеяние нейтронов

•V •Cu •Si •N •C •P •Mn

10 нм

Атомные карты исследованных объемов после первичного облучения

24

number density is about (1÷2)×10¹⁰ cm⁻³.

RADIAL CONCENTRATION DISTRIBUTION OF TWO DIFFERENT COPPER ENRICHED CLUSTERS

Исследование распределения химических элементов карбидах

Исследование наноструктуры перспективных конструкционных материалов ядерных и термоядерных реакторов нового поколения

Конструкционные материалы активной зоны нового поколения

Требования:

- Радиационная стойкость (>160 сна)
- Жаропрочность (>700°С)
- Низкая активация при эксплуатации

Стратегическое направление:

Разработка материалов, упрочненных дисперсными включениями: дисперсионно твердеющие стали, ДУО стали, ...

Дисперсионно твердеющие и дисперсно-упрочненные оксидами стали

ЭК-181, Eurofer 97 ..., (дисперсионно твердеющие стали)
 ЭК-181 ДУО, ЭП-450 ДУО..., ODS Eurofer,... (упрочненные оксидами стали)

🛛 сплавы ванадия (V-4Ti-4Cr).

Важнейшая характеристика – упрочнение материалов наноразмерными включениями !

Что из себя представляют дисперсные частицы?
Какова их плотность и распределение по размерам?
Как технология производства влияет на размер и состав дисперсных частиц?
Какой локальный состав матрицы?
Что происходит под облучением?

Исследование дисперсно упрочненных оксидами сталей

ODS Eurofer – перспективный материал активной зоны ядерных и термоядерных реакторов

Size dustribution of oxide particles in ODS Eurofer. TEM results

34

\bigcirc

Chemical element distribution in oxide particles in ODS Eurofer. TEM results

Size dustribution of oxide particles in ODS Eurofer. SANS and TEM results

Tomographic atom probe study of oxide dispersion strengthened steels

9% Cr ODS Eurofer, without Ti, 0.2 at.%V

at.%	Cr	W	V	Y	0
	9,6	0,33	0,21	0,25	0,37

Cluster number density: ~ 2× 10²³ m⁻³ Cluster size: 2-3 nm

Cluster composition in ODS Eurofer

9% Cr ODS Eurofer, without Ti, 0.2 at.%V

Rogozhkin S.V. et al., JNM^{3,6}2011

3AP permits to achieve the ultimate depth spatial resolution : the crystal lattice parameter

38

3D reconstruction of CuNb alloy

3D image obtained from the analysis of a CuNb alloy (development for superconductive coil wires).

Each dot is a Cu atom.

➤ This distribution shows the presence of a thin wire of Cu (2nm in diameter) in the material.

Acquisition time: 1.5 hour

Diffusion along grain boundary

Interaction of two aluminium and silver layers after thermal annealing:

The decreasing dimensions in integrated circuits require reliable characterization of thin films and reactions taking place. By using Al/Ag layers grown by sputter deposition as model system, it could be demonstrated how the reaction is controlled by the microstructure. *Here after a short annealing,* transport of Al atoms along Grain Boundaries (GB) in the Ag layer becomes visible in a 3D reconstruction of the analysed volume

Conclusions

- TAP investigations are necessary to understand the development of the nanostructure during the different production steps and the influence on the material properties.
- This could be helpful to optimise the micro/nano structure in order to further improve the material properties.