How the Fair Russia Research Centre came all about:

Moscow, October 5, 2005

Visit of the new president of the Helmholtz Association, Prof.Mlynek to Russia. Here, he recognizes **the BIG number** of fresh PhD students leaving Science. He decides to do something against and asked for suggestions. This led to the FRRC of today.

Dr. Heinze, Prof. Sharkov, Prof.Mlynek, Prof. Heuer

Proposal for a

Joint Helmholtz-ROSATOM "FAIR-Russia Research Centre"

Submitted by

Gesellschaft for Schwerionenforschung, Darmstadt (GSI) Institute of Theoretical and Experimental Physics, Moscow (ITEP)

Prof. Dr. Horst Stöcker Prof. Walter F. Henning Director Gesellschaft fbr Schwerionenf orschung

> Planckstr. 1 64291 D armstadt Germany

Tel.: +49 -6159 -71 -2648 Fax: +49-6159-71-2991 Email: henning@gsi. de

For ITE P:

P Prof. Nynek, Dresident of close to 1,3 accepted the Cerman Helmholts ~SI) ~. million Euro for the Desman Helmholts Suro for the proposal and siven a next 2.5 years a grant Prof. Boris Y. Sharkov Director Inst. of Theoretical and Exper imental Physics Bolshaya Cheremushkinskaya, 25 117218 Mosc ow Russia

Tel.: +7 -495 -123 -02 -88 Fax: +7-495-123-30-28 Email: boris.sharkov@itep.ru

For FAIR:

Prof. Hans Gutbrod FAIR Joint Core Team Leader

Planckstr. 1 64291 D armstadt Germany

Tel.: +49 -6159 -71 - 2458 Fax: +49-6159-71-3916 Email: H.Gutbro d@gsi.de

Prof. Mlynek, Dr. Uwe Meyer, German Embassy

Dr. Nikolay Spasskiy (Deputy Head of ROSATOM), Prof. Boris Sharkov

Inauguration of FRRC in its new Building 40 at ITEP on August 30th, 2008

Prof. Victor Varentsov, Russian delegate to FAIR JCT and Bruno Becker de Mos, head experiment integration send greetings August 29th, 2008

Status of FAIR or

Samuel Beckett's 'En attendant Godot (Waiting for Godot)'*

ESTRAGON: Let's go. VLADIMIR: We can't. ESTRAGON: Why not? VLADIMIR: We're waiting for Godot.

Germany and other FAIR countries await eagerly the O.K. from Russian government to sign the FAIR convention with the pledged amount of 15%

* from play at Lower 9th Ward in New Orleans

FAIR GmbH?

Prof. Boris Sharkov, elected Scientific FAIR Director

Prof. Sergej Kozub, elected Head of pre-consortium of SIS 300

Signing ceremony of KACST-GSI Letter of Intent May 3^d, 2009

Cosmic Matter in the Lab

Hans H. Gutbrod

GSI Helmholtzzentrum für Schwerionenforschung

Goethe Universität Frankfurt am Main

Austria China Finnland

France

Observers

想這加

Germany Greece India Italy Poland Slovakia Slovenia

Spain

Sweden Romania

UK

Russia

QCD & Big Bang

Fundamental Questions – The FAIR Science Case

• Proton mass puzzle

- only 2% of the mass of the proton is governed by quarks
- 98% of the mass result from the complexity of the strong interaction which is only qualitatively understood
- QCD Phase diagram free quarks and gluons
 - existence and properties of the quark-gluon plasma
 - chiral restoration
 - critical phenomena and the process of hadronization
- Hadrons bound systems of quarks and gluons
 - properties of the binding among quarks extreme hadrons
 - gluonic degrees of freedom and investigation of the structure of hadrons
- Nuclei bound systems of hadrons
 - study of large proton and neutron excess
 - origin and abundances of the chemical elements

FAIR's science and experimental collaborations

Hadron Structure and Dynamics: COSY, SIS, FAIR + Theory

Nuclear and Quark Matter: SIS, CERN, FAIR + Theory

Exotic Nuclei and Nuclear Astrophysics: UNILAC, SIS, FAIR + Theory

Hot EM-Plasmas: high intensity ion bunches hitting petawatt Laser pulses PHELIX Matter at high energy densities

SIS-100 will provide 3,000 times the beam power and 600 times higher energy density in the target

Uranium beam	SIS-18	SIS-100	
E。	400 MeV/u	0.4 – 2.7 GeV/u	
Ν	4-10 ⁹	2.10 ¹²	×500
E _{beam}	0.06 kJ	76 kJ	
τ	130 ns	50 ns	
P _{beam}	0.5 GW	1.5 TW	×3000
S _f	~1 mm	~1 mm	
	Leo	ad target	
E _s	1 kJ/g	600 kJ/g	×600
Ps	5 GW/g	12 TW/g	×2400

Towards IC Fusion! FAIR an excellent test bed!

The Physics of Highly Charged lons

test of bound state QED in the critical field limit

correlated many-body effects on the atomic structure and dynamics

determination of nuclear properties

precision determination of fundamental constants

Spectroscopy for tests of CPT and QED

Antiprotonic atoms: pbar-He! pbar-p, antihydrogen

Gravitation of antimatter

Trapped and laser-cooled antihydrogen

Atomic collisions

Sub-femtosecond correlated dynamics: ionization, energy loss, antimatter-matter collisions

ERDGERGESCHOSS

Copyright: Dr. A. Braeuning-Demian Arch. M. Zimmer

Most Intense Source of Antiprotons Worldwide

NUSTAR & SuperFRS: exotic astrophysical isotopes

Comparison of FRS with Super-FRS, intensity gain

(N)ESR unique! relativistic exotic ions in storage rings

GSI

Newly observed decay-properties in H-like iodine

- Orbital electron capture of highly-charged exotic ions
 - exhibits modulated exponential behaviour
 - explanation presently under discussion

Hypernuclear landscape with HypHI

PANDA Physics Program

R&D and Construction of **panda**

Pellet Target Micro Vertex Detector Central Tracker Luminosity Monitor

Electronics Simulation **Physics** Infrastructure Computing

DIRC Detector **EM Calorimeter Planar GEMs**

Physics Book, Technical Design Reports: EMC, Magnets, (Targets, Tracking)

HESR with PANDA and Electron Cooler

HESR		COSY
574 m	Circumference	184 m
1.5–15 GeV	Momentum	.3-3.7 GeV
< 9 GeV/c	Electron Cooling	<0.5 GeV
Full range	Stochastic Cooli.	1.5-3.7GeV

HESR Consortium: Germany (Jülich, GSI), Sweden, Georgia, Poland and Romania 28

PANDA hardware developments

CBM: Compressed Nuclear and Quark-Gluon Matter

• **Goal:** Create and investigate in the laboratory extreme states of strongly interacting matter.

- What are the properties of deconfined matter?
- → Where are the phase boundaries located?
- \rightarrow Is there a critical point?
- Where are the limits of hadronic existence?

HADRO

Tc

QGP

NUCLEI

EXDIE PHASE.

Compressed Baryonic Matter: CBM Physics Topics

Probing the high density EoS: collapse of coll. flow of protons? Q-H phase boundary@high ρ_B : multi-strange + charm production QCD critical point: E-by-E fluctuations: Energy dep. Hadron Yields Chiral symmetry rest. at high ρ_B : open charm, dilepton prod.

The Compressed Baryonic Matter Experiment

CBM Experimental Challenges

Fast track reconstruction algorithms running on graphic processing units:

- speed 46 ns / track
- track reconstruction efficiency > 96%
- momentum resolution $\Delta p/p < 1.5\%$ speed

Measurements with rates up to

- **10⁷ Au+Au reactions/sec** require:
 - extremely fast and radiation hard detectors
 - free-streaming readout electronics
 - high-speed online event selection
 - CPU&GPU PetaFlops / M€
 - FAIR Tier-Zero @ GSI

CBM hardware developments

radiation-hard double-sided silicon microstrip detectors

self-triggering read-out chip 128 ch, 32 MHz

high-rate large-area

fast on-line event selection using manycore architectures (CELL, LRB, GPUs)

high-rate large-area semiconductive glass

FAIR- accelerator-systems (schedule)

	Year	2008	2009	2010	2011	2012	2013	2014	2015	2016
Start Version	Super FRS									
	p-bar target									
	p-Linac									
	SIS100									
	CR									
	NESR									
	RESR									
	HESR									
Phase B	SIS300		Magnet R	2&D						
	ER									

Construction
Commissioning
Operation

Overall schedule (FAIR accelerator sections)

FAIR- accelerator-systems (R&D-activities, technique)

- Design and construction of superconducting prototype magnets in collaboration with external partners and industry.
- Design studies on
 Electron Cooling and
 Stochastic Beam Cooling
- Studies and construction of RF systems, vacuum components etc...

SIS100 superferric dipole prototype

SIS100 superferric quadrupole prototype

Superconducting Magnet R&D (SIS100)

Low loss sc magnet. Losses dominated by eddy currents < 30 W/m. Two-phase LHe cooling (4K).

Prototype production at JINR Dubna, BINP Novosibirsk, and BNG Würzburg

SIS 100 Dipole Magnets Full Size Model from Babcock Noell GmbH

SIS 300 High Energy- and Stretcher Stage

Highly charges ions e.g. U⁹²⁺-ions up to 34 GeV/u Intermediate charge state ions U²⁸⁺- ions at 1.5 to 2.7 GeV/u with 100% duty cycle

 $B\rho = 300 \text{ Tm}$ $B_{max} = 4.5 \text{ T}$ dB/dt = 1 T/s (curved)

- superconducting high-field magnets and
- stretcher function

Based on Russian UNK magnets

Superconducting Magnet R&D (SIS300)

First cycling sc $\cos\Theta$ magnet: GSI001 by BNL (2003)

SIS300 curved dipole (INFN)

*

Model under construction

Large Aperture Super Ferric Magnets

Development of large aperture (up to 380 mm) bending magnets (warm iron, sc coil) in China

Chinese Academy of Science

Beam Cooling for Precision Beams

Cooler Parameters (NESR)				
energy	2 - 450 keV			
max. current	2 A			
beam radius	2.5-14 mm			
magnetic field				
gun	up to 0.4 T			
cool. sect.	up to 0.2 T			
straightness	2×10 ⁻⁵			
vacuum	\leq 10 ⁻¹¹ mbar			

BINP

"No Taxation without Representation !"

Transparency from 2004

First Evaluating Expression of Interest

SIS 100 Pre-Consortium (Peter Spiller SIS100 Machine Coordinator)

WP	Eol No.	Lab	Country	Tech. Coordinator
Magnets	9	JINR	Russia	A. Kovalenko
	12	VNIINM		V. Panzyrnyi / L. Potanina
	13	GSI	Germany	E. Fischer
Power Converters	13	GSI	Germany	H. Ramakers
	4	FINPRO	Finland	A. Heikkila
RF	13	GSI	Germany	H. Klingbeil
lnj/Extr.	9	JINR	Russia	A. Kovalenko
Diagnostics	8	ITEP	Russia	B. Vasiliev / B. Sharkov
	13	GSI	Germany	M. Schwickert
Vacuum	9	JINR	Russia	A. Kovalenko
	18	ICSI	Romania	M. Curuia
	7	CUT	Poland	B. Skoczen
Collimators	9	JINR	Russia	A. Kovalenko
Cryogenics	15	WUT	Poland	M. Chorowski
		BINP	Russia	Y. Shatunov
		IHEP	Russia	S. Kozub

SIS 300 Pre-Consortium (spokesperson Sergey Kozub)

Formed in March 2009

- Preconsortium Board consists of responsible SIS300 systems: Pasquale Fabbricatore - dipoles, Sergey Kozub - quadrupoles, multipoles, cryogenic system, Dmitry Lyakin – beam diagnostic, Peter Spiller – other systems.
- positions of Spokesperson Deputy and Resourse Coordinator have been left opened.

Super FRS Pre-Consortium (Martin Winkler, SUPER-FRS Machine Coordinator)

WP	Eol No.	Lab	Country	Tech. Coordinator
Magnets	11	CIEMAT	Spain	I. Rodriguez
		CEA Saclay	France	N. Alamanos
	14	IMP Lanzhou	China	P. YUAN
	5	BINP	Russia	Y. Shatunov
	1	VECC	India	R. Bhandari
	13	GSI	Germany	H. Leibrock
Power Converters	13	GSI	Germany	H. Ramakers
	(4)	Prizztech	Finland	P. Suominen
Diagnostics	informal	Uni Jyväskylä	Finland	A. Jokinen, I. Moore
	13	GSI	Germany	M. Schwickert
Vacuum	5	BINP	Russia	Y. Shatunov
Special Insertions	1	VECC	India	A. Chakrabarti,
				S. Chattopadhyay
	2	Profex	Romania	C. Gornic
	13	GSI	Germany	
Cryogenics	15	WUT	Poland	M. Chorowski
		IHEP	Russia	S. Kozub

Collector-Ring Pre-Consortium (Markus Steck, CR Machine Coordinator)

WP Magnets Power Converters	Lab BINP GSI GSI	Country Russia Germany Germany	Tech. Coordinator Y. Shatunov H. Leibrock H. Ramakers
RF Injection/Extraction Diagnostics Vacuum	GSI IMP Lanzhou GSI GSI BINP GSI	Germany China Germany Germany Russia Germany	H. Klingbeil P. YUAN, D. GAO U. Blell M. Schwickert Y. Shatunov A. Krämer
Stochastic Cooling	ITEP GSI	Russia Germany	B. Vasiliev / B. Sharkov F. Nolden

Construction of new test and assembly hall (ca. 3000 m²) and new detector laboratory in preparation of FAIR

Gain Factors

- Beam energies by a factor 20
- Production of antimatter beams
- Factor 10000 in beam brilliance via cooling 18
- Efficient parallel operation of programs

Construction Period, Cost, Users

- Construction in three phases until 2016
- Total cost 1.2 B€ in 2005 prices
- Scientific users: 2500 3000 per year

Present financial status:

•705 M€ Germany
•400 M€ Partner Countries
→FAIR GmbH with International Shareholders

You are most kindly requested to help building vour

Russian international laboratory at Darmstadt

Germany Greece India

E CONTRACTOR

A DAY AN AN AN

Observers

券追NI

Austria

China

Finnland

France

Poland

Italy

Slovakia Slovenia Spain Sweden Romania Russia UK