First seminar of FRRC Fellows
FAIR - Russia Research Center, Moscow 9-10 June 2009, ITEP Moscow

Long CsI(Tl) detectors for R3B and EXL in frame of NUSTAR

Sergey Krupko

Flerov Laboratory of Nuclear Reactions Joint Institute for Nuclear Research

Dubna, Russia

The Technical Concept for FAIR

R3B \& EXL Univ of Compostella \& IPN Orsay

Similar Calorimeters as GASPA

R3B: Reactions with Relativistic Radioactive Beams

New calorimeter based on CsI(Tl) crystals
($1 \times 2 \times 13-20 \mathrm{~cm}^{3}, 5025$ units) and APD:
$\boldsymbol{\varepsilon}_{\gamma} \sim 80$ \% @ 15 MeV
$\Delta \Theta \sim 0.018$ rad
$\mathrm{E}_{\gamma}=1-30 \mathrm{MeV}, \Delta \mathrm{E} / \mathrm{E} \sim 4-5 \%$ @ 662 keV
$\mathrm{E}_{\mathrm{p}}<\mathbf{3 0 0 \mathrm { MeV } , \Delta \mathrm { E } / \mathrm { E } \sim \mathbf { 1 \% } \text { or better }}$
USC (Spain), LU (Sweden) JINR and Kurchatov Inst.

CALIFA design v1.2

First design iteration (CALIFA 1.2):

- 6570 crystals in 73 different crystal types
- Covering polar angles between 7° and 133°
- Trapezium-like shaped crystals
- Simple geometry filling the gaps
- Typical crystal volume: $10 \times 20 x(130-200) \mathrm{mm}^{3}$
- Weight: $\sim 1600 \mathrm{Kg}$; volume: $\sim 360 \mathrm{dm}^{3}$

As we were open to criticism, criticism

came soon...

- Azimuthal gaps between crystals
- Too many different shapes of crystals
- Too many channels/crystals...
- Too heavy, ...who is going to hold it during the experiment? Students required
- Too small crystal section (also affects to the capability to cover the shower in a crystals of few crystals)

H. Alvarez Pol - R3B Calorimeter Simulation
...so, a second iteration in the design
\rightarrow Irregular crystal shape
\rightarrow From 73 types in CALIFA 1.2 we moved
to $\mathbf{1 0}$ types in CALIFA 2.0
\rightarrow Reduction from 6570 to less than $\mathbf{4 5 0 0}$ crystals
\rightarrow Ongoing discussion on support systems and crystal wrapping (carbon fibre alveolus?)
\rightarrow Slightly larger crystal section, slightly farther away from the target (but approx. the same polar angle resolution)

CALIFA 2.0

- 4500 crystals
- 10 different types
- No azimuthal gaps
- Unsolved problems on forward region
- Collaboration from IPN Orsay and USC
- Less (wider) crystals, better gamma eficiency (no holes)
- Nice solution for BARREL, not so good for EndCap: many different crystals types, still not optimized
- Radius too large (minimum ~ 45 cm)

Details of the EXL setup

Design goals:

- Universality: applicable to a wide class of reactions
- Good energy and angular resolution
- Large solid angle acceptance
- Target recoils and gammas (p,a,n,ү)
- Forward ejectiles (p,n)
- Beam-like heavy ions
- Specially dedicated for low q measurements with high luminosity $\left(>10^{28} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$

EXL: EXotic Nuclei Studied in Light-Ion Induced Reaction at the NESR

PTI (St.Petersburg) - silicon detectors VNIIEF (Sarov) - mechanical support \& temperature stabilization system JINR and Kurchatov Institute - CsI shell JINR - in-ring instrumentation

Completely new setup: Si shell (~ 700 items) CsI shell (~ 2000 items)

The EXL Recoil and Gamma Array

$$
\begin{aligned}
& \text { Si DSSD } \quad \Rightarrow \Delta \mathrm{E}, \mathrm{x}, \mathrm{y} \\
& 300 \mu \mathrm{~m} \text { thick, spatial resolution } \\
& \text { better than } 500 \mu \mathrm{~m} \text { in } \mathrm{x} \text { and } \mathrm{y}, \\
& \Delta \mathrm{E}=30 \mathrm{keV}(\mathrm{FWHM})
\end{aligned}
$$

Thin Si DSSD $\quad \Rightarrow$ tracking $<100 \mu \mathrm{~m}$ thick, spatial resolution better than $100 \mu \mathrm{~m}$ in x and y , $\Delta \mathrm{E}=30 \mathrm{keV}$ (FWHM)

$$
\mathbf{S i}(\mathbf{L i}) \quad \Rightarrow \mathbf{E}
$$

9 mm thick, large area $100 \times 100 \mathrm{~mm}^{2}$, $\Delta \mathrm{E}=50 \mathrm{keV}$ (FWHM)

CsI crystals $\quad \Rightarrow$ E, γ

High efficiency, high resolution, 20 cm thick

Crystal features (v5.0):

- Only five different crystal types in Barrel
${ }^{-}$Three different crystal size combinations (short, medium, Long). Medium proposed for prototype
- Variable length with polar angle, according to the Lorentz boost results
${ }^{\sim}$ Terminated to $\sim 20 \times 10 \mathrm{~mm}$ to connect with Hamamatsu APD S8664-2010 (*)
" A "triedrum" corner facilitates mechanical production and measurements of the crystal
- Inner calorimeter radius 300 mm (minimum)
- Technical drawings available for production
(*) Not on catalogue, production depends on a research contract with Hamamatsu company

NuSTAR CalWG Meeting - Lund, 18 June. 2007

Detectors in R3BSim: CALIFA geometry

Crystal length selection (v4.0b):

- Three calorimeters with different crystal size combinations have been simulated (short, medium, LoNg)
${ }^{\wedge}$ For each calorimeter, lengths are selected to cover approx. the same photopeak efficiency @ 5MeV CoM
- Overlap problems, corrected in simulation (temporal solution)

ee different models: Short, Medium and Large			Energy 700 AmeV			Chosen for approx. 60\%, 70\% and 80\% PE @ 5MeV CoM					
10	15	20	25	30	35	45	55	65	90	120	Angle (deg)
2.97	2.75	2.49	2.23	1.97	1.74	1.36	1.08	0.88	0.57	0.41	E_lab/E_CM
14.85	13.75	12.45	11.15	9.85	8.7	6.8	5.4	4.4	2.85	2.05	E-lab for 5 MeV CM
1.32	1.25	1.2	1.14	1.1	1.05	1.01	1	0.99	0.95	0.8	Approx. Multiplicative factor
15	14	13	13	12	12	11	11	11	10	9	Crystal length (cm)
lium 18	18	17	16	15	15	14	14	14	13	11	
22	21	20	19	19	18	17	17	17	16	14	

H. Alvarez Pol - R³B Calorimeter Simulation

Where are our place?

JINR FLNR experience:
First successful steps start in 2004 Complete production of CsI(Tl) detectors from cutting solid cristal to final preparation of surfaces, wraping and coupling.

nustr

Cluster of CsI(Tl) detectors from MAYA(Ganil) + Si \& FEE MUST2 on a experiments at Spiral

$600 \mathrm{~cm}^{2}$ active area
All Front-End Electronics in Vacuum
1400 channels (Time \& Energy)

Comparing tipical Crystals

What`s wrong in long cristal?

- Big length refer to cross section make the great difference in light collection from different interaction positions
-Loses of light in absortion and reflections
- Differnce of concentration of activator Tl

Summary:
-Total low lightoutput collection
-Great uniformity on lenght

Activity in R'n'D

WGs uses typical path:
Buy the CsI(Tl) with shape close to nessesery Wraping or not
with optimized surface or not

> Subjects of investigation: Wraping and coupling compabality with fotodetectors

General quest:
Optimization of uniformity - best energy resolution

Demonstrator calorimeter R3B-EXL @ Orsay

Prototype parts

CsI crystal from Amcrys

Double PMTs from Photonis

Csi cryst from Ancrys

CREMAT preamps and bases

Scarpaci et al., Orsay

Energy Resolutions CsI(TI) + VM2000+APD/PMT+ ${ }^{137} \mathrm{Cs}$

Uniformity measurment

Our posibilities:

-Reflector materials: Maylar, PTFE, Tyvec, ESR

Vikuity

-Photodetectors: PIN-diodes from $5 \times 5 \mathrm{~mm}^{2}$ to 20x20mm ${ }^{2}$ (Hamamatsu and Moscow),
Hamamatsu APD \& LAAPD, PMTs - CsI(TI) Cristals different shapes from $10 \times 10 \times 15 \mathrm{~mm} 3$ to $50 \times 20 \times 250 \mathrm{~mm}^{3}$
-Different optical coupling materials: Epo-tex, Bicron, RTV
-Technology of surface mating and polishing

What can we do new?

General key: Integrated investigation of -surface preparation -wraping materials and tehnolodgy - «botle neck» shape
-coupling and choosing photodetectors

according economics
 and

technolodgical aspects.

Summary:

Results of proposal investigation could be useful in TDR and mass production of CsI(TI) detectors for calorimeters R3B and EXL

Minimal posible profit - specify and taxonomy results of different WGs

Thank for your atention!

Study of the non-uniformity

Energy resolution dependence on the first interaction point

Non-uniformity ~ 8.4 \%, to compare with < 3\% measured by St. Gobain

Light collection uniformity CMS CAL
P. Sempere PhD Thesis

ACCULINNA Fragment Separator

Max magnetic rigidity Solid angle H/V acceptance angle
3.6 Tm Momentum acceptance

$$
\begin{aligned}
& 20 / 14 \mathrm{mrad} \\
& 4.2-8.4 \%
\end{aligned}
$$

Protons: $E_{p} \sim 150 \mathrm{MeV}$

Tritons:

Monoenergetic triton beam, $D_{\mathrm{Bp}}=15.2 \mathrm{~mm} / \%$

