Electron identification algorithms for calorimeter in front of CBM MuCH

Mikhail Prokudin

Outline

Electron identification

- Calorimeter geometry
- Methods
 - Cluster formation
 - ► E_{calo}/P_{track}
 - Impact point analysis
- Results
 - ►J/ ψ →e⁺e⁻ as a test channel
- Lead/scintillator calorimeter
 - Geometry and photon reconstruction quality

Geometry

▶ Size: 2.5×2.0 m²

- 20×16 modules
- 25 readout channels per module
 - ▶ 2.5×2.5 cm² cell size
- 7900 channels total
- 1.5 m distance from target
 5-45° angular acceptance

Geometry

70 layers

- 1.0 mm tungsten
- 1.5 mm plastic
 - ▶ 175 mm total thickness
 - Space for readout?
- 20X₀
- 0.95 nuclear interaction length
- Energy resolution

non zero constant term because calorimeter a little bit short for 16 GeV photons

Inputs and methods

30 GeV pC events for background

- ... and $J/\psi \rightarrow e+e-$ for signal
- Tracking system
 - position on calorimeter surface
 - momentum

For calorimeter in electron option

- Compare E_{calo} and P_{track}
 - new cluster formation procedure

Preshower information

 no preshower in calorimeter in front of MUCH

Shape

- energy deposition in 2×2 subcluster/energy deposition in 3×3 cluster
- Impact angles very high

Additional methods

Reconstruction of impact point by calorimeter

(not very) advanced shower shape analysis

- Analysis of MUCH hits on track trajectory after the calorimeter
 - Require integration of calorimeter with MUCH system
- For large (25° and more) impact angles a cell hit by the track can be used as a preshower

not implemented

All presented analysis is preliminary and can be improved

Cluster formation

Procedure

- local maximum
- 2x2 maximum matrix
- center of gravity of 2x2 maximum matrix (☆)
- ellipse
 - center of ellipse located on line from center of calorimeter to found center of gravity
- sort all cells depending on area intersect with ellipse
- cluster

 cells with maximum
 intersection area

Electrons. E=2 GeV, Angle=25°

Very similar to precluster formation for photons

Cluster size

16 GeV photons

Maximum and track matching

► Vector V: ★→☆

- ★: track impact point
 ☆: calorimeter cluster's center of gravity
- use P and Q reference system
 - Coordinates of the vector: (V_P, V_Q)
- The V_Q should be [-1.2cm, +1.2cm]
- The boundaries for V_P are tabulated as a function of
 - ▶ impact angle
 - momentum

Electrons. E=2 GeV, Angle=25°

P axis coincide with direction of particle momentum

Examples of V_P and V_O

[-2%,+2%] of the distribution outside the region marked by red ★ stars. [-1.2cm, +1.2 cm] boundaries used for V_Q Maximums ex [-10%,+30%] boundaries used for V_P Photon recomp

Maximums exclusion for Photon reconstruction

Cluster energy vs. track momentum

- ► Cluster energy ≠ particle energy
 - only energy in scintillator is seen
 - calibration needed
 - technical issue identical to one for photons
- ► Use e⁺e⁻ from J/ψ decay as a signal

- (very) simple approach
 - not care about calorimeter energy resolution

Cluster energy vs. track momentum. Another variables

- Center: momentum measured by tracker
- Sigma: Energy resolution for given energy (momentum)
- ▶ Integrate $[-\infty, E_{calo}]$

Log scale!Cut at 0.05

Reconstruction of impact point by calorimeter

- Same vector V (V_P, V_Q) as for matching between track and calorimeter cluster
- Slick boundaries for matching
 - tight for identification
 - very simple approach

Examples of Q distributions

▶ -0.5<V_O<0.5 ► V_P depends on energy use \star position for a cut V_{P} hp 20000 Entrine 1.415 RMS 0.3127 1400 1200 1000 800 600 400 200 0.5 2 2.5 3 1.5 P. cm

Signal Background 1400 1200 1000 800 600 400 200 -0.5 -1 0 0.5 1 Va

Need a better criteria

TODO:

Results

	Hadron rejection	Efficiency	Momentum	Hadron rejection
			<5GeV	55.6
E_{calo}/P_{track}	25.8	90.2%	5-8 GeV	673
Limpact			>8 GeV	>1000
point	02.4	82.5%		

First version of identification for calorimeter in front of MUCH

- Still could be optimized
- At least 2 more methods for electrons identification
 - hits in MUCH on track trajectory
 - preshower-like information for large angles
- Longitudinal segmentation?

J/ψ generation

Background

- 1000000 events
- 30 GeV pC UrQMD
- No events after cuts
 - see multiplicity
- Superevent
 - Equivalent of 10¹² events

Signal

- ► 40000 events
- J/ψ from HSD
- UrQMD pC
- Energy/Momentum badly violated!
- Multiplicity: 5.12e-8

J/ψ signal

Efficiency: 15%
S/B: 0.99

Cuts

P_T>1.2 GeV

 Id with calorimeter only

Conclusions

- First version for calorimeter in front of MUCH presented
- 2 methods reviewed
 - E_{calo}/P_{track}
 - Reconstruction of impact point by calorimeter
 - parameters depend on energy

TODO

- 2 more methods can be used
- shower shape analysis
 - like for photons

Methods

Compare E_{calo} and P_{track}

new cluster formation procedure

Preshower information

- no preshower in calorimeter before MUCH
 - Infor large (25° and more) impact angles a cell hit by the track can be used as a preshower

Shape

- energy deposition in 2×2 subcluster/energy deposition in 3×3 cluster
- Impact angles very high

Reconstruction of impact point by calorimeter

- (not very) advanced shower shape analysis
- Analysis of MUCH clusters after calorimeter